Магнитоэлектрические и магнитные свойства алюмоборатов $Ho_{1-x}Nd_xAl_3(BO_3)_4$

Н. В. Волков, И. А. Гудим, А. А. Демидов⁺¹⁾, Е. В. Еремин Институт физики им. Киренского СО РАН, 660036 Красноярск, Россия

+Брянский государственный технический университет, 241035 Брянск, Россия

Поступила в редакцию 17 декабря 2014 г.

После переработки 23 декабря 2014 г.

Проведено экспериментальное и теоретическое исследование магнитоэлектрических и магнитных свойств замещенных алюмоборатов $Ho_{1-x}Nd_xAl_3(BO_3)_4$. Обнаружен большой магнитоэлектрический эффект, превышающий все известные значения в изоструктурных соединениях, кроме $HoAl_3(BO_3)_4$. Магнитоэлектрическая поляризация $Ho_{0.8}Nd_{0.2}Al_3(BO_3)_4 \Delta P_{ab}(B_b) \approx -2630 \text{ мкKл/m}^2$, а $Ho_{0.5}Nd_{0.5}Al_3(BO_3)_4 \Delta P_{ab}(B_b) \approx 1380 \text{ мкKл/m}^2$ при T = 5 K в поле 9 Тл. Теоретическое рассмотрение, основанное на модели кристаллического поля для редкоземельного иона, позволило в едином подходе проинтерпретировать все измеренные свойства. Определены параметры кристаллического поля. Описаны температурные (3–300 K) и полевые (до 9 Тл) зависимости намагниченности и температурные (5–100 K) и полевые (до 9 Тл) зависимости поляризации. Проведено сравнение исследованных свойств $Ho_{1-x}Nd_xAl_3(BO_3)_4$ и демонстрирующего рекордные значения поляризации HoAl_3(BO_3)_4.

DOI: 10.7868/S0370274X15050070

Введение. Тригональные редкоземельные бораты $RM_3(BO_3)_4$ (M = Fe, Al, Cr, Ga, Sc) в последнее десятилетие активно исследуются благодаря своим интересным физическим свойствам и их разнообразию при различных комбинациях R- и Мэлементов (см., например, [1-6] и обзор [7]). Для боратов с двумя магнитными подсистемами (ферробораты $RFe_3(BO_3)_4$) установлена их принадлежность к мультиферроикам [1,3,7]. Недавно было выяснено, что известные своими нелинейно-оптическими свойствами бораты с одной магнитной подсистемой – алюмобораты RAl₃(BO₃)₄ – обнаруживают гигантские значения магнитоэлектрической поляризации [6, 8–11]. В HoAl₃(BO₃)₄ рекордная для мультиферроиков магнитоэлектрическая поляризация при $T = 5 \,\mathrm{K}$ в поле 9 Тл составляет $\Delta P_{ab}(B_b) \approx$ -5240 мкКл/м² [11] и в разы превышает известные максимальные значения поляризации, в том числе и в ферроборатах.

В [12] было показано, что различие в величинах поляризации в $HoFe_3(BO_3)_4$ и $HoAl_3(BO_3)_4$ обусловлено главным образом различием в величинах магнитострикции. Аномальная температурная зависимость поляризации обнаружена в $TbAl_3(BO_3)_4$. Она связана с возрастающей с ростом температуры заселенностью верхних энергетических уровней основного мультиплета иона Tb³⁺ [6]. Однако полного понимания механизмов магнитоэлектрического взаимодействия в алюмоборатах и роли R-иона в происходящих процессах нет.

Представляют большой интерес синтез и исследование новых алюмоборатов, например замещенных составов $R_{1-x}^{(1)}R_x^{(2)}Al_3(BO_3)_4$, обеспечивающих еще большее разнообразие обнаруживаемых эффектов и, возможно, их усиление. Например, в [13] выявлено, что максимальная величина поляризации в замещенном ферроборате $Ho_{0.5}Nd_{0.5}Fe_3(BO_3)_4$ больше, чем в чистом HoFe₃(BO₃)₄. Обоснованными представляются ожидания аналогичного усиления по сравнению с рекордным значением ΔP в HoAl₃(BO₃)₄ поляризации и в алюмоборате $Ho_{1-x}Nd_xAl_3(BO_3)_4$. Использование ионов Nd³⁺ в замещенных алюмоборатах также перспективно, поскольку в ферроборатах одно из наибольших значений ΔP обнаружено в NdFe₃(BO₃)₄. При этом информации о измерениях $\Delta P(B)$ в чистом NdAl₃(BO₃)₄ в литературе нет.

Данная работа посвящена синтезу, а также экспериментальному и теоретическому исследованию магнитоэлектрических и магнитных свойств новых замещенных алюмоборатов $\operatorname{Ho}_{1-x}\operatorname{Nd}_x\operatorname{Al}_3(\operatorname{BO}_3)_4$ и их сравнению со свойствами $\operatorname{HoAl}_3(\operatorname{BO}_3)_4$.

Эксперимент.

Монокристаллы $Ho_{1-x}Nd_xAl_3(BO_3)_4$ выращивались из растворов-расплавов на основе тримолибдата вис-

¹⁾e-mail: demandr@yandex.ru

мута и молибдата лития [14, 15]. Раствор-расплавную систему удобно представить в квазибинарной форме: (100 - n) % масс. [Bi₂Mo₃O₁₂ + 1.5B₂O₃ + + 0.4Li₂MoO₄] + n % масс. Ho_{1-x}Nd_xAl₃(BO₃)₄. Для x = 0.2 и 0.5 концентрация кристаллообразующих окислов, соответствующая стехиометрии, составляет n = 10 и 9% соответственно. К сожалению, NdAl₃(BO₃)₄ находится за пределом стабильности тригональной фазы. Поэтому были выращены кристаллы Y_{0.65}Nd_{0.35}Al₃(BO₃)₄.

Магнитные свойства были исследованы с помощью PPMS-9 (Quantum Design) в диапазоне температур 2–300 К и магнитных полях до 9 Тл. Магнитоэлектрические исследования проводились путем измерения заряда между двумя контактами, приложенными к противоположным сторонам плоскопараллельной пластинки, электрометром Keithley 6517B.

Методика расчетов. При расчетах использовались результаты исследований изоструктурных $Ho_{1-x}Nd_xAl_3(BO_3)_4$ соединений: $HoAl_3(BO_3)_4$ [11, 16], $TmAl_3(BO_3)_4$ [17], $HoGa_3(BO_3)_4$ [5], ферроборатов $HoFe_3(BO_3)_4$ [18] и с другими R [2, 19], а также парамагнитных цирконов RXO_4 (X = P, V) [20].

Для расчета магнитных характеристик и эффекта Зеемана использовался гамильтониан \mathcal{H} включающий гамильтониан кристаллического поля (КП) \mathcal{H}_{cf} , зеемановский член \mathcal{H}_Z и магнитоупругий гамильтониан, записанный в мультипольном приближении \mathcal{H}_{me} :

$$\mathcal{H} = \mathcal{H}_{cf} + \mathcal{H}_{Z} + \mathcal{H}_{me}, \qquad (1)$$

$$\mathcal{H}_{cf} = B_0^2 C_0^{(2)} + B_0^4 C_0^{(4)} + i B_{-3}^4 (C_{-3}^{(4)} + C_3^{(4)}) + B_0^6 C_0^{(6)} + i B_{-3}^6 (C_{-3}^{(6)} + C_3^{(6)}) + B_6^6 (C_{-6}^{(6)} + C_6^{(6)}), \quad (2)$$

$$\mathcal{H}_{\rm Z} = -g_J \mu_{\rm B} \mathbf{B} \mathbf{J}.\tag{3}$$

В этих выражениях B_q^k – параметры КП для D_3 симметрии, C_q^k – неприводимые тензорные операторы, g_J – фактор Ланде, **J** – оператор углового момента R-иона. Магнитоупругий гамильтониан Rподсистемы \mathcal{H}_{me} для кристалла тригональной симметрии с учетом операторов четвертого порядка был выписан ранее в работе [19].

В намагниченность парамагнитных соединений $Ho_{1-x}Nd_xAl_3(BO_3)_4$ во внешнем поле **В** дают вклад гольмиевая и неодимовая подсистемы:

$$M = (1 - x)m^{\mathrm{Ho}} + xm^{\mathrm{Nd}}, \quad \mathbf{m}^{\mathrm{R}} = g_J^{\mathrm{R}} \mu_{\mathrm{B}} \langle \mathbf{J}^{\mathrm{R}} \rangle.$$
(4)

Результаты и обсуждение. Описание магнитных свойств Ho_{1-x}Nd_xAl₃(BO₃)₄ необходимо начать с определения параметров КП B_q^k , поскольку именно КП, формирующее электронную структуру R-иона (его спектр и волновые функции), ответственно за анизотропию магнитных свойств.

В работах $[11, 16]^{2)}$ при интерпретации экспериментальных данных для температурных и полевых зависимостей намагниченности и магнитострикции были определены параметры КП для иона Ho^{3+} в $HoAl_3(BO_3)_4$. Поскольку данные параметры КП позволили хорошо описать все измеренные магнитные и магнитоупругие свойства $HoAl_3(BO_3)_4$, они были использованы в качестве начальных для $Ho_{1-x}Nd_xAl_3(BO_3)_4$, с которых стартовала процедура минимизации соответствующей целевой функции. Также при поиске параметров КП использовались параметры для $YAl_3(BO_3)_4$: Ho^{3+} [21], $NdAl_3(BO_3)_4$ [22], $TmAl_3(BO_3)_4$ [17] и $HoFe_3(BO_3)_4$ [18].

Для определения параметров КП в целевую функцию закладывались данные о кривых намагничивания $M_{c,\perp c}(B)$ при T = 3 К в полях до 9 Тл и температурных зависимостях намагниченности $M_{c,\perp c}(T)$ от 3 до 300 К при B = 0.1 и 9 Тл. Руководствуясь критериями описания $M_{c,\perp c}(T,B)$ и близостью структуры основного мультиплета к обнаруженной в YAl₃(BO₃)₄:Ho³⁺ [21] и NdAl₃(BO₃)₄ [22], мы выбрали набор, который позволяет наиболее хорошо описать всю совокупность экспериментальных данных ($B_q^k = (x = 0.2[x = 0.5])$, в см⁻¹):

$$B_0^2 = 566[413], \quad B_0^4 = -1470[-1338],$$

$$B_{-3}^4 = -260[-248], \quad B_0^6 = 37[10],$$

$$B_{-3}^6 = -390[-462], \quad B_6^6 = -527[-477].$$
(5)

Поскольку эти параметры были определены при расчетах на базисе основного мультиплета, они могут рассматриваться только как пригодные для описания термодинамических свойств $Ho_{1-x}Nd_xAl_3(BO_3)_4$.

Из представленных на рис. 1 кривых намагничивания $M_{c,\perp c}(B)$ Ho_{1-x}Nd_xAl₃(BO₃)₄ (x = 0.2, 0.5) при T = 3 К видно, что с ростом поля зависимости $M_{c,\perp c}(B)$ для каждого состава возрастают с разной скоростью, демонстрируя заметную анизотропию, которая уменьшается с ростом параметра x. Рассчитанные для каждого состава зависимости $M_{c,\perp c}(B)$ хорошо описывают экспериментальные кривые. Сравнение $M_{c,\perp c}(B)$ для Ho_{1-x}Nd_xAl₃(BO₃)₄ и HoAl₃(BO₃)₄ (см. рис. 1 в [11]) показывает, что

 $^{^{2)}} Параметр <math display="inline">B_{6}^{6}$ в русской версии работы [16] должен быть равен $-671\,{\rm сm}^{-1}.$

Рис. 1. (Цветной онлайн) Кривые намагничивания $Ho_{1-x}Nd_xAl_3(BO_3)_4$ (x = 0.2, 0.5) и $Y_{0.65}Nd_{0.35}Al_3(BO_3)_4$ для $\mathbf{B} \parallel \mathbf{c}$ и $\mathbf{B} \perp \mathbf{c}$ при T = 3 К. Значки – экспериментальные данные, линии – расчет

замещение Ho³⁺ на Nd³⁺ приводит к небольшому уменьшению магнитной анизотропии. При этом характер зависимостей $M_{c,\perp c}(B)$ аналогичен обнаруженному в HoAl₃(BO₃)₄, поскольку вклад от Но-подсистемы является доминирующим. В поле B = 9 Тл вклад Но-подсистемы составляет ~ 97 % в M_c и ~ 95 % в $M_{\perp c}$ для состава с x = 0.2 и ~ 89 % в M_c и ~ 82 % в $M_{\perp c}$ для x = 0.5.

Для понимания особенностей вкла-Nd-подсистемы магнитные в свойства да $Ho_{1-x}Nd_xAl_3(BO_3)_4$ были измерены зависимости $M_{c,\perp c}(B)$ Y_{0.65}Nd_{0.35}Al₃(BO₃)₄, которые также приведены на рис. 1. Видно, что в Y_{0.65}Nd_{0.35}Al₃(BO₃)₄, в отличие от $\operatorname{Ho}_{1-x}\operatorname{Nd}_x\operatorname{Al}_3(\operatorname{BO}_3)_4$ (x = 0 [11], 0.2, 0.5), легким направлением намагничивания является направление магнитного поля в базисной плоскости $(M_{\perp c} > M_c)$. Поэтому замещение Но³⁺ на Nd³⁺ приводит к небольшому уменьшению магнитной анизотропии в $Ho_{1-x}Nd_xAl_3(BO_3)_4$. Расчет кривых $M_{c,\perp c}(B)$ Y_{0.65}Nd_{0.35}Al₃(BO₃)₄ показал, что параметры КП для чистого NdAl₃(BO₃)₄ из [22] позволяют удовлетворительно описать эксперимент.

Из представленных на рис.2 температурных зависимостей намагниченности $M_{c,\perp c}(T)$ $\mathrm{Ho}_{0.8}\mathrm{Nd}_{0.2}\mathrm{Al}_3(\mathrm{BO}_3)_4$ в поле $B = 0.1\,\mathrm{Tr}$ и (на вставке) в больших полях B = 3, 6 и 9 Tл видно, что анизотропия кривых $M_{c,\perp c}(T)$ при низких T с ростом B уменьшается и хорошо описывается во всем диапазоне температур. Аналогичное хорошее

Письма в ЖЭТФ том 101 вып. 5-6 2015

Рис. 2. (Цветной онлайн) Температурные зависимости намагниченности $M_{c,\perp c}(T)$ Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ при B = 0.1 Тл. На вставке – зависимости $M_{c,\perp c}(T)$ при B = 3, 6, 9 Тл. Значки – экспериментальные данные, линии – расчет (красные – $M_c(T)$, черные – $M_{\perp c}(T)$)

описание $M_{c,\perp c}(T)$ при B = 0.1, 3, 6 и 9 Тл было достигнуто и для состава с x = 0.5. Анализ значений $M_c/M_{\perp c}$ показывает, что для B = 0.1 и 3 Тл происходит уменьшение анизотропии, а для B = 6 и 9 Тл – ее небольшой рост по сравнению с HoAl₃(BO₃)₄. Например, для Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ при T = 5 K (в скобках приведены значения для HoAl₃(BO₃)₄) $M_c/M_{\perp c} = 1.99$ (2.21), 1.34 (1.35), 1.08 (1.07) и 1.00 (0.99) для B = 0.1, 3, 6 и 9 Тл соответственно.

Показанные на рис. 3 зависимости $M_c - M_{\perp c}(T)$ для Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ (светлые значки) и HoAl₃(BO₃)₄ (темные значки) при B = (0.1-9) Тл позволяют проанализировать зависимость магнитной анизотропии от Т и В. Видно, что кривые $M_c - M_{\perp c}(T)$ для Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ при B = 0.1и 3 Тл идут ниже (анизотропия меньше) кривых для $HoAl_3(BO_3)_4$. Для большего поля, B = 9 Тл (и частично для 6 Тл), наоборот, наблюдается превышение кривых $M_c - M_{\perp c}(T)$ Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄, которое с ростом Т меняется, и анизотропия снова становится меньше, чем в HoAl₃(BO₃)₄. Анализ зависимостей $M_c - M_{\perp c}(T)$ Y_{0.65}Nd_{0.35}Al₃(BO₃)₄ (вставка к рис. 3) показывает, что вклад Nd-подсистемы в магнитную анизотропию $Ho_{1-x}Nd_xAl_3(BO_3)_4$ имеет другой знак и существенен для $T < 60 \,\mathrm{K}$ и $B > 0.1 \,\mathrm{Tr}$.

Рассмотрим вклад Но-подсистемы в магнитную анизотропию $Ho_{1-x}Nd_xAl_3(BO_3)_4$. Поскольку для $Y_{0.65}Nd_{0.35}Al_3(BO_3)_4$ кривые $M_c - M_{\perp c}(T) < 0$

Рис. 3. (Цветной онлайн) Экспериментальные температурные зависимости $M_c - M_{\perp c}(T)$ Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ (светлые значки) и HoAl₃(BO₃)₄ (темные значки) при B = 0.1, 3, 6 и 9 Тл. На вставке – низкотемпературная область $M_c - M_{\perp c}(T)$ Y_{0.65}Nd_{0.35}Al₃(BO₃)₄

(см. вставку к рис. 3) и результирующие кривые $M_c - M_{\perp c}(T)$ для $\text{Ho}_{0.8}\text{Nd}_{0.2}\text{Al}_3(\text{BO}_3)_4$, за исключением низкотемпературного участка для B = 3 Тл, близки к кривым для $\text{HoAl}_3(\text{BO}_3)_4$, вклад Ho-подсистемы в магнитную анизотропию $\text{Ho}_{1-x}\text{Nd}_x\text{Al}_3(\text{BO}_3)_4$ оказывается заметно более анизотропным, чем в $\text{HoAl}_3(\text{BO}_3)_4$. Оценка значений $M_c - M_{\perp c}(T)$ $\text{Ho}_{0.8}\text{Nd}_{0.2}\text{Al}_3(\text{BO}_3)_4$ за вычетом значений для $Y_{0.65}\text{Nd}_{0.35}\text{Al}_3(\text{BO}_3)_4$, т.е. вклада от Ho-подсистемы, показывает, что относительно $\text{HoAl}_3(\text{BO}_3)_4$ при T = 5 К анизотропия в Ho-подсистеме практически не изменилась в поле 3 Тл, увеличилась в ~1.5 раза в поле 6 Тл и в ~7 раз в поле 9 Тл.

Из вышеизложенного понятно, что $Ho_{1-x}Nd_xAl_3(BO_3)_4$ (x = 0.2, 0.5) и $HoAl_3(BO_3)_4$ демонстрируют близкие магнитные свойства. При этом наблюдается небольшое уменьшение результирующей магнитной анизотропии с ростом параметра x. Рассмотрим, как повлияли на рекордную поляризацию $HoAl_3(BO_3)_4$ замещение Ho^{3+} на Nd^{3+} , изменившееся КП и магнитная анизотропия.

На следующих рисунках изображены полевые зависимости продольной $(\Delta P_{aa}(B_a))$ и поперечной $(\Delta P_{ab}(B_b))$ поляризации Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ (рис. 4) и Ho_{0.5}Nd_{0.5}Al₃(BO₃)₄ (рис. 5). Как и в HoAl₃(BO₃)₄, с ростом поля наблюдается аналогичный сильный рост анизотроп-

Рис. 4. (Цветной онлайн) Экспериментальные полевые зависимости продольной (а) и поперечной (b) магнитоэлектрической поляризации $Ho_{0.8}Nd_{0.2}Al_3(BO_3)_4$ при указанных температурах. На вставках – полевые зависимости мультипольного момента – $\beta_J \langle O_4^2 \rangle$ для **B** $\|$ **a** (a) и **B** $\|$ **b** (b) (кривые для соответствующих температур показаны одинаковым цветом)

кривых $\Delta P_a(B_{a,b})^{3}$. Обнаруженная ных поляризация достигает при $T = 5 \,\mathrm{K}$ в 9 Тл значения $\Delta P_{ab}(B_b)$ \approx $-2630 \,\mathrm{mkK} \mathrm{m}/\mathrm{m}^2$ для $Ho_{0.8}Nd_{0.2}Al_3(BO_3)_4$ и $\Delta P_{ab}(B_b) \approx -1380 \,\mathrm{mkK}_{\mathrm{M}}/\mathrm{m}^2$ для Ho_{0.5}Nd_{0.5}Al₃(BO₃)₄. Указанные величины ΔP существенно превышают все известные значения (далее в мкКл/м²) для ферроборатов (~300 в NdFe₃(BO₃)₄ [23] и HoFe₃(BO₃)₄ [24], ~500 в SmFe₃(BO₃)₄ [25], ~900 в Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ [13] и ~ 1000 в Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ [26]), алюмоборатов (~140 в ErAl₃(BO₃)₄ [10] и ~750 в TmAl₃(BO₃)₄ [8,10]), галлобората НоGa₃(BO₃)₄ (~1020) [5] и

³⁾В работе [11] индекс "b" при ΔP и B должен быть заменен на "a" и наоборот. Например, вместо $\Delta P_{ba}(B_a)$ должно стоять $\Delta P_{ab}(B_b)$.

Рис. 5. (Цветной онлайн) Экспериментальные полевые зависимости продольной (а) и поперечной (b) магнитоэлектрической поляризации $Ho_{0.5}Nd_{0.5}Al_3(BO_3)_4$ при указанных температурах. На вставках – полевые зависимости мультипольного момента – $\beta_J \langle O_4^2 \rangle$ для **B**||**a** (a) и **B**||**b** (b) (кривые для соответствующих температур показаны одинаковым цветом)

являются к данному моменту вторым результатом, уступая только рекордному значению в $HoAl_3(BO_3)_4$ (~5240) [11]. Измерения поляризации для $\mathbf{B} \| \mathbf{c}$ показали, что, как и в $HoAl_3(BO_3)_4$, она существенно меньше, чем при $\mathbf{B} \perp \mathbf{c}$.

Таким образом, установлено, что в $Ho_{1-x}Nd_xAl_3(BO_3)_4$ реализуются предположенные нами большие значения магнитоэлектрического эффекта. Однако ожидаемого усиления эффекта не произошло. Мы проверили возможность влияния на полученный результат инверсионного двойникования в монокристаллах $Ho_{1-x}Nd_xAl_3(BO_3)_4$. Рентгеновские исследования фактора двойникования показали, что Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ на 100 %, а Ho_{0.5}Nd_{0.5}Al₃(BO₃)₄ на 81 % левые.

Письма в ЖЭТФ том 101 вып. 5-6 2015

Для понимания особенностей вклада Ndподсистемы в магнитоэлектрические свойства $Ho_{1-x}Nd_xAl_3(BO_3)_4$ были измерены полевые зависимости $\Delta P_a(B_{abc})$ кристалла $Y_{0.65}Nd_{0.35}Al_3(BO_3)_4$. Из рис. 6 понятно, что $Y_{0.65}Nd_{0.35}Al_3(BO_3)_4$ не демон-

Рис. 6. (Цветной онлайн) Экспериментальные полевые зависимости продольной (а) и поперечной (b) магнитоэлектрической поляризации $Y_{0.65}Nd_{0.35}Al_3(BO_3)_4$ при указанных температурах. На вставках – полевые зависимости мультипольного момента $-\beta_J \langle O_4^2 \rangle$ для **B**||**a** (a) и **B**||**b** (b) (кривые для соответствующих температур показаны одинаковым цветом)

стрирует возможные по аналогии с ферроборатом NdFe₃(BO₃)₄ большие значения ΔP . При T = 5 K в поле B = 9 Тл $\Delta P_{ab}(B_b)$ и $\Delta P_{aa}(B_a) \approx 70$ мкКл/м², а $\Delta P_{ac}(B_c) \approx 1$ мкКл/м².

Учитывая малый вклад в величину поляризации от Nd-подсистемы, можно предположить, что основная причина обнаруженного уменьшения ΔP в Ho_{1-x}Nd_xAl₃(BO₃)₄ (по сравнению с HoAl₃(BO₃)₄) связана с уменьшившимся вкладом от Ho_{1-x}подсистемы. Однако исследование HoGa₃(BO₃)₄ [5] показало существенно большее уменьшение ΔP (~5 раз) по сравнению с HoAl₃(BO₃). При этом в Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ поляризация уменьшилась в ~2 раза, а в наполовину замещенном Ho_{0.5}Nd_{0.5}Al₃(BO₃)₄ – в ~3.8 раза. Отметим, что если бы результирующая поляризация являлась суммой вкладов от значений в чистых составах, то в Ho_{0.8}Nd_{0.2}Al₃(BO₃)₄ величина $\Delta P_{ab}(B_b)$ должна была бы оказаться в ~1.6 раза больше (~4262 мкКл/м²), чем обнаружено. Интересно также, что выявленное небольшое уменьшение магнитной анизотропии в Ho_{1-x}Nd_xAl₃(BO₃)₄ (по сравнению с HoAl₃(BO₃)₄), которое согласно выводам [9,10] должно приводить к росту ΔP , не оказывает заметного влияния.

Поскольку вклад в величину поляризации от Ndподсистемы мал, можно предположить, что основной причиной уменьшения ΔP является не уменьшение вклада от Ho_{1-x}-подсистемы, а его качественное изменение. Как было указано выше при анализе рис. 3, вклад Но-подсистемы в магнитную анизотропию $Ho_{0.8}Nd_{0.2}Al_3(BO_3)_4$ при B > 3 Тл стал более анизотропным, чем в HoAl₃(BO₃)₄. В соответствии с выводами [9,10] это приводит к уменьшению вклада от Но-подсистемы в общую поляризацию соединения. Увеличение магнитной анизотропии в Но-подсистеме в $Ho_{1-x}Nd_xAl_3(BO_3)_4$ связано с изменившимся КП (вследствие замещения Но³⁺ на Nd^{3+}), которое формирует электронную структуру иона Но³⁺ и ответственно за магнитную анизотропию. В $Ho_{0.5}Nd_{0.5}Al_3(BO_3)_4$ уменьшение ΔP обусловлено также еще и обнаруженным двойникованием.

Ранее в ряде работ было установлено существование устойчивых корреляций магнитоэлектрических и магнитоупругих свойств боратов $RM_3(BO_3)_4$. Например, в TmAl₃(BO₃)₄ [8], HoAl₃(BO₃)₄ [9] и ферроборатах [7,24], а также в Ho_{0.75}Nd_{0.25}Fe₃(BO₃)₄ [26] обнаружена корреляция между полевыми зависимостями поляризации и магнитострикции. Недавно было показано, что различие в величинах ΔP в HoFe₃(BO₃)₄ и HoAl₃(BO₃)₄ обусловлено главным образом различием в величинах магнитострикции [12]. Авторы [12] полагают, что возникающий в RM₃(BO₃)₄ магнитоэлектрический эффект определяется магнитострикцией и пьезоэлектричеством. В магнитном поле происходит деформация решетки, которая и обусловливает появление поляризации. Можно полагать, что изменившееся при замещении КП в $Ho_{1-x}Nd_xAl_3(BO_3)_4$ обусловливает увеличение магнитной анизотропии в Но-подсистеме, которое приводит к меньшей величине магнитострикции и, как следствие, поляризации.

Магнитоупругие явления (магнитострикция, аномалии параметров решетки и упругих констант) сильно зависят от R-иона и его электронной структуры (формируемой КП) и обусловлены изменением асферичности 4f-оболочки R-иона при изменении внешних параметров (магнитного поля, температуры и т.д.). Мультипольные моменты являются адекватной характеристикой асферичности 4fоболочки R-иона. Рассчитанные полевые и температурные зависимости мультипольных моментов в HoAl₃(BO₃)₄ [16] и в TmAl₃(BO₃)₄ [17] позволили описать обнаруженную в них магнитострикцию. Ранее такие расчеты были проведены и для ферроборатов (см., например, [19]). Учитывая установленную корреляцию магнитоэлектрических и магнитоупругих свойств, мы провели аналогичные сделанным в [16, 17] и [5] расчеты для Ho_{1-x}Nd_xAl₃(BO₃)₄ и сравнили их результаты с зависимостями $\Delta P(B)$ (магнитоупругий гамильтониан и выражение для магнитострикции см. в [19] и [16, 17]).

Согласно [16, 17, 5] наибольшие моменты $-\beta_J \langle O_A^2 \rangle$ и $-\alpha_J \langle O_2^2 \rangle$ ответственны за поведение магнитострикции при **B** \perp **c**. На вставках к рис. 4 и 5 приведены полевые зависимости наиболее сильно изменяющегося с полем момента $-\beta_J \langle O_4^2 \rangle$, рассчитанного с учетом вкладов от Ho- и Nd-подсистем ($\beta_J \langle O_4^2 \rangle$ = $= (1-x)\beta_J^{\text{Ho}}\langle O_4^2 \rangle^{\text{Ho}} + x\beta_J^{\text{Nd}}\langle O_4^2 \rangle^{\text{Nd}})$ с параметрами КП (5) при тех же температурах, при которых были измерены $\Delta P_a(B_{a,b})$. Видно, что характер изменения с полем и температурой момента $-\beta_J \langle O_4^2 \rangle$ находится в полном качественном согласии с зависимостями $\Delta P_a(B_{a,b},T)$ и предсказывает аналогичный нелинейный вид не исследованной экспериментально магнитострикции. Зависимости $-\alpha_J \langle O_2^2 \rangle (B_{a,b},T)$ второго актуального момента близки к показанным значимостям $-\beta_J \langle O_4^2 \rangle (B_{a,b}, T)$. Отметим, что моменты $-\beta_J \langle O_4^2 \rangle$ и $-\alpha_J \langle O_2^2 \rangle$, как и ΔP_a , имеют противоположные знаки при В||а и В||b. Соответственно для этих направлений поля ожидаются противоположные знаки и у магнитострикции. Кроме того, при **B**||**b** актуальные моменты изменяются с полем больше, чем при В а. Следовательно, и значение магнитострикции $\Delta a/a$ при **B** $\|$ **b** должно быть больше, чем при $\mathbf{B} \| \mathbf{a}$, что коррелирует с соотношениями поляризаций при $\mathbf{B} \| \mathbf{a}, \mathbf{b}$ и результатами [9].

На рис. 6 также приведены зависимости $\beta_J^{\text{Nd}}\langle O_4^2 \rangle^{\text{Nd}}(B_{a,b},T)$ для $Y_{0.65}\text{Nd}_{0.35}\text{Al}_3(\text{BO}_3)_4$, рассчитанные с параметрами КП для $\text{NdAl}_3(\text{BO}_3)_4$ из [22], которые хорошо описывают кривые $\Delta P_a(B_{a,b},T)$. Видно, что значения $\beta_J^{\text{Nd}}\langle O_4^2 \rangle^{\text{Nd}}$

Письма в ЖЭТФ том 101 вып. 5-6 2015

при **B** $\|$ **a** и **B** $\|$ **b** близки, что соответствует близким значениям ΔP_a для данных направлений поля.

Поскольку используемый теоретический подход позволяет хорошо описать основные особенности кривых $\Delta P_a(B)$ при $B_{a,b} < 9$ Тл, представляется интересным провести расчеты и для больших магнитных полей, в которых измерения еще не выполнены, и, таким образом, предсказать дальнейшее поведение поляризации, в частности возможность продолжения роста или наличие насыщения. Мы провели такие расчеты для $Ho_{1-x}Nd_xAl_3(BO_3)_4$ (x = 0.2, 0.5) и $HoAl_3(BO_3)_4$. Как и предполагалось, полученные результаты оказались близки. При В \perp с в полях до 25 Тл происходит наибольшее изменение моментов $-\alpha_J \langle O_2^2 \rangle$ и $-\beta_J \langle O_4^2 \rangle$. При этом для полей $B_{\perp c} < 9$ Тл указанные моменты близки, а после 10 Тл момент $-\beta_J \langle O_A^2 \rangle$ демонстрирует широкий пик и уменьшается, а $-\alpha_J \langle O_2^2 \rangle$ продолжает медленно расти. Таким образом, можно полагать, что в полях $B_{\perp c} > 9$ Тл кривые магнитострикции и поляризации изменят резкий рост на плавное возрастание до 14 Тл (потенциал роста 5-7%), а затем в зависимости от того, какой из моментов будет давать наибольший вклад, будут наблюдаться либо широкий пик и уменьшение $\Delta P(B)$, либо продолжение плавного возрастания.

Заключение. В настоящей работе проведено исследование термодинамических свойств $Ho_{1-x}Nd_xAl_3(BO_3)_4$ и $Y_{0.65}Nd_{0.35}Al_3(BO_3)_4$. Установлено, что в $Ho_{1-x}Nd_xAl_3(BO_3)_4$ (x = 0.2, 0.5) реализуется большой магнитоэлектрический эффект, уступающий по величине среди боратов $RM_{3}(BO_{3})_{4}$ только $HoAl_{3}(BO_{3})_{4}$. Сравнение со свойствами демонстрирующего рекордные значения поляризации HoAl₃(BO₃)₄ позволило проанализировать возможные причины уменьшения поляризации в $Ho_{1-x}Nd_xAl_3(BO_3)_4$ и сделать вывод о большом влиянии на магнитоэлектрические свойства кристаллического поля. Определенные параметры дали возможность в едином подходе проинтерпретировать все измеренные свойства и обнаруженные особенности.

Возможное экспериментальное исследование поляризации и магнитострикции $\text{HoAl}_3(\text{BO}_3)_4$ и $\text{Ho}_{1-x}\text{Nd}_x\text{Al}_3(\text{BO}_3)_4$ в полях $B_{\perp c} > 9$ Тл позволит проверить предсказания их поведения и тем самым установить, какие из моментов являются главными. В дальнейшем это должно помочь при описании и предсказании возможных гигантских значений ΔP в еще не исследованных боратах $\text{RM}_3(\text{BO}_3)_4$.

Исследование выполнено при финансовой поддержке РФФИ (грант # 13-02-12442 офи м2).

- А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьев, А.П. Пятаков, Л.Н. Безматерных, Е.А. Попова, Письма в ЖЭТФ 81, 335 (2005).
- E.A. Popova, D.V. Volkov, A.N. Vasiliev, A.A. Demidov, N.P. Kolmakova, I.A. Gudim, L.N. Bezmaternykh, N. Tristan, Yu. Skourski, B. Buechner, C. Hess, and R. Klingeler, Phys. Rev. B 75, 224413 (2007).
- A.I. Popov, D.I. Plokhov, and A.K. Zvezdin, Phys. Rev. B 87, 024413 (2013).
- 4. T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi, and T. Kimura, Nat. Mat. 13, 611 (2014).
- Н.В. Волков, И.А. Гудим, Е.В. Еремин, А.И. Бегунов, А.А. Демидов, К.Н. Болдырев, Письма в ЖЭТФ 99, 72 (2014).
- A.M. Kadomtseva, Yu.F. Popov, G.P. Vorob'ev, N.V. Kostyuchenko, A.I. Popov, A.A. Mukhin, V.Yu. Ivanov, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov, A. P. Pyatakov, and A. K. Zvezdin, Phys. Rev. B 89, 014418 (2014).
- А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В. Л. Темеров, ФНТ **36**, 640 (2010).
- R. P. Chaudhury, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, V. L. Temerov, and C. W. Chu, Phys. Rev. B 81, 220402 (2010).
- K.-C. Liang, R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, and C.W. Chu, Phys. Rev. B 83, 180417(R) (2011).
- K.-C. Liang, R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, I.A. Gudim, V.L. Temerov, and C.W. Chu, J. of Phys.: Conf. Ser. 400, 032046 (2012).
- А. И. Бегунов, А. А. Демидов, И. А. Гудим, Е. В. Еремин, Письма в ЖЭТФ 97, 611 (2013).
- В. И. Зиненко, М. С. Павловский, А. С. Крылов, И. А. Гудим, Е. В. Еремин, ЖЭТФ 144, 1174 (2013).
- R. P. Chaudhury, F. Yen, B. Lorenz, Y. Y. Sun, L. N. Bezmaternykh, V. L. Temerov, and C. W. Chu, Phys. Rev. B 80, 104424 (2009).
- L. N. Bezmaternykh, V. L. Temerov, I. A. Gudim, and N. A. Stolbovaya, Crystall. Rep. 50, 97 (2005).
- V.L. Temerov, A.E. Sokolov, A.L. Sukhachev, A.F. Bovina, I.S. Edelman, and A.V. Malakhovskii, Crystall. Rep. 53, 1157 (2008).
- А. И. Бегунов, Д. В. Волков, А. А. Демидов, ФТТ 56, 498 (2014).
- А. А. Демидов, Д. В. Волков, И. А. Гудим, Е. В. Еремин, К. Н. Болдырев, ЖЭТФ 146, 835 (2014).
- 18. А.А. Демидов, Д.В. Волков, ФТТ **53**, 926 (2011).
- A. A. Demidov, N. P. Kolmakova, L. V. Takunov, and D. V. Volkov, Physica B **398**, 78 (2007).

- A. A. Demidov, Z. A. Kazei, N. P. Kolmakova, J.-M. Broto, and H. Racoto, Phys. Rev. B 70, 134432 (2004).
- A. Baraldi, R. Capelletti, M. Mazzera, N. Magnani, I. Foldvari, and E. Beregi, Phys. Rev. B 76, 165130 (2007).
- C. Cascales, C. Zaldo, U. Caldino, J. Garcia Sole, and Z. D. Luo, J. Phys.: Cond. Mat. 13, 8071 (2001).
- А.К. Звездин, Г.П. Воробьев, А.М. Кадомцева, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, А.В. Кувардин, Е.А. Попова, Письма в ЖЭТФ 83, 600 (2006).
- А. М. Кадомцева, Г. П. Воробьев, Ю. Ф. Попов, А. П. Пятаков, А. А. Мухин, В. Ю. Иванов, А. К. Звездин, И. А. Гудим, В. Л. Темеров, Л. Н. Безматерных, ЖЭТФ 141, 930 (2012).
- Ю. Ф. Попов, А. П. Пятаков, А. М. Кадомцева, Г. П. Воробьев, А. К. Звездин, А. А. Мухин, В. Ю. Иванов, И. А. Гудим, ЖЭТФ **138**, 226 (2010).
- 26. Г.П. Воробьев, Ю.Ф. Попов, А.М. Кадомцева, Е.В. Кувардин, А.А. Мухин, В.Ю. Иванов, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров, Труды III Международного, междисциплинарного симпозиума "Среды со структурным и магнитным упорядочением" (Multiferroics-3), Ростов-на-Дону (2011).