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We discuss a possible origin of the experimentally observed nonlinear contribution to the shift ∆Tc =

= Tc − T 0
c of the critical temperature Tc in an atomic Bose–Einstein condensate (BEC) with respect to

the critical temperature T 0
c of an ideal gas. We found that accounting for a nonlinear (quadratic) Zeeman

effect (with applied magnetic field closely matching a Feshbach resonance field B0) in the mean-field ap-

proximation results in a rather significant renormalization of the field-free nonlinear contribution b2, namely

∆Tc/T
0
c ≃ b∗2(a/λT )

2 (where a is the s-wave scattering length, λT is the thermal wavelength at T 0
c ) with

b∗2 = γ2b2 and γ = γ(B0). In particular, we predict b∗2 ≃ 42.3 for the B0 ≃ 403G resonance observed in the
39K BEC.
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Studies of Bose–Einstein condensates (BECs) con-

tinue to be an important subject in modern physics (see,

e.g., Refs. [1–4] and further references therein). Atomic

BECs are produced in the laboratory in laser-cooled,

magnetically-trapped ultra-cold bosonic clouds of dif-

ferent atomic species (including 87Rb [5, 6],7Li [7], 23Na

[8], 1H [9], 4He [10], 41K [11], 133Cs [12], 174Yb [13],

and 52Cr [14], among others). Also, a discussion of a

relativistic BEC has appeared in Ref. [15] and BECs of

photons are most recently under investigation [16]. In

addition, BECs are successfully utilized in cosmology

and astrophysics [17] as they have been shown to con-

strain quantum gravity models [18].

In the context of atomic BECs interparticle interac-

tions must play a fundamental role since they are nec-

essary to drive the atomic cloud to thermal equilibrium.

Thus, they must be carefully taken into account when

studying the properties of the condensate. For instance,

interatomic interactions change the condensation tem-

perature Tc of a BEC, as was pointed out first by Lee

and Yang [19, 20] (see also Refs. [21–30] for more recent

works).

The first studies of interactions effects were focused

on uniform BECs. Here, interactions are irrelevant in the

mean field (MF) approximation (see Refs. [25, 28–30])
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but they produce a shift in the condensation tempera-

ture of uniform BECs with respect to the ideal nonin-

teracting case, which is due to quantum correlations be-

tween bosons near the critical point. This effect has been

finally quantified in [25, 26] as ∆Tc/T
0
c ≃ 1.8(a/λT ),

where ∆Tc ≡ Tc − T 0
c with Tc the critical temperature

of the gas of interacting bosons, T 0
c is the BEC conden-

sation temperature in the ideal noninteracting case, a is

the s-wave scattering length used to represent interpar-

ticle interactions [1, 3, 4], and λT ≡
√

2π~2/makBT 0
c

is the thermal wavelength for temperature T 0
c with ma

the atomic mass.

But laboratory condensates are not uniform BECs

since they are produced in atomic clouds confined in

magnetic traps. For trapped BECs, interactions affect

the condensation temperature even in the MF approxi-

mation, and the shift in Tc in terms of the s-wave scat-

tering length a is given by

∆Tc/T
0
c ≃ b1(a/λT ) + b2(a/λT )

2 (1)

with b1 ≃ −3.4 [1] and b2 ≃ 18.8 [31].

High precision measurements [32] of the conden-

sation temperature of 39K in the range of parame-

ters N ≃ (2−8) · 105, 10−3 < a/λT < 6 · 10−2

and Tc ≃ (180−330)nK have detected second-order

(nonlinear) effects in ∆Tc/T
0
c fitted by the expression

∆Tc/T
0
c = bexp2 (a/λT )

2 with bexp2 ≃ 46 ± 5. This re-
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sult has been achieved exploiting the high-field 403 G

Feshbach resonance in the |F,mF 〉 = |1, 1〉 hyperfine

(HF) state of a 39 K condensate where F ≡ S + I is

the total spin of the atom with S and I being elec-

tron and nuclear spin, respectively, and mF is the pro-

jection quantum number. Thus, the theoretically pre-

dicted [31] quadratic-amplitude coefficient b2 turned out

to be in a rather strong disagreement with the available

experimental data. There have also been some efforts

to theoretically estimate the correct value of b2 in the

MF approximation by considering anharmonic and even

temperature-dependent traps [33], which however have

not been too successful. Therefore one could expect that

a more realistic prediction of the experimental value of

bexp2 should take into account some other so far unac-

counted effects.

The main goal of this paper is to show that, tak-

ing into account the nonlinear (quadratic) Zeeman effect

and using the MF approximation, it is quite possible to

explain the experimentally observed [32] value of b2 for

the 403 G resonance of the hyperfine |F,mF 〉 = |1, 1〉

state of 39 K with no need to go beyond-MF approxima-

tion.

Recall that experimentally the s-wave scattering

length parameter a is tuned via the Feshbach-resonance

technique based on Zeeman splitting of bosonic atom

levels in an applied magnetic field. This means that the

interaction constant g ≡ (4π~2a/ma) is actually always

field-dependent. More explicitly, according to the inter-

pretation of the Feshbach resonance [34, 35]

a(B) = abg

(

1−
∆

B −B0

)

, (2)

where abg is a so-called background value of a, B0 is the

resonance peak field, and ∆, the width of the resonance.

Thus, in order to properly address the problem of

condensation-temperature shifts (which are always ob-

served under application of a nonzero magnetic field

B), one must account for a Zeeman-like contribution.

It should be emphasized, however, that a single (free)

atom Zeeman effect (induced by either electronic or nu-

clear spin) µaB is not important for the problem at hand

simply because it can be accounted for by an appropri-

ate modification of the chemical potential.

Recall that in the presence of a linear Zeeman ef-

fect, the basic properties of an atomic BEC can be un-

derstood within the so-called "condensate wave func-

tion"approximation [2]

H =

∫

d3xH(x), (3)

where H(x) = gn2−EZn with n(x) = Ψ+(x)Ψ(x) being

the local density of the condensate (Ψ(x) is the properly

defined wave function of macroscopic condensate), and

EZ = µBB the Zeeman energy (with µB being the Bohr

magneton).

Following Bogoliubov’s recipe [36], let us consider

small deviation of the condensate fraction from the

ground state n0 (the number) by assuming that n(x) ≃

≃ n0 + δn(x) with δn(x) ≪ n0. Treating, as usually, n0

and δn(x) independently, we obtain from Eq. (3) that

in the presence of the linear Zeeman effect gn0 = EZ

(meaning that EZ is playing a role of the chemical po-

tential [37]) and, as a result, the BEC favors the follow-

ing energy minimum:

δH0(x) = 2gn0δn(x)− EZδn(x) = gn0δn(x), (4)

Thus, we come to the conclusion that at low mag-

netic fields (where the linear Zeeman effect is valid), in

accordance with the available experimental results [37],

there is no any tangible change of the BEC properties

(including g modification). On the other hand, there is

a clear-cut experimental evidence [38, 39] in favor of the

so-called Breit–Rabi nonlinear (quadratic) HF-mediated

Zeeman effect [40] in BEC. We are going to demonstrate

now how this nonlinear phenomenon (which is not a

trivial generalization of the linear Zeeman effect) affects

the BEC properties (including a feasible condensation

temperature shift). Recall that in strong magnetic fields,

the magnetic-field energy shift of the sublevel mF of

an alkali-metal-atom ground state can be approximated

(with a rather good accuracy) by the following expres-

sion [38]

ENLZ = AHF

E2
Z

hδνhf
, (5)

where AHF =
[

1−
4m2

F

(2I+1)2

]

and δνhf is the so-called hy-

perfine splitting frequency between two ground states.

Now, by repeating the above-mentioned Bogoli-

ubov’s procedure, we obtain a rather nontrivial result

for BEC modification. Namely, it can be easily veri-

fied that HF-mediated nonlinear Zeeman effect gives

rise to the following two equivalent options for the

energy minimization (based on the previously defined

ground state with EZ = gn0): (a) ENLZ ∝ g2n2
0 or (b)

ENLZ ∝ EZgn0 = (µBB)gn0. As a matter of fact, the

choice between these two options is quite simple. We

have to choose (b) simply because (a) introduces the

second order interaction effects (∝ g2) which are ne-

glected in the initial Hamiltonian (3). As a result, the

high-field nonlinear Zeeman effect produces the follow-

ing modification of the local BEC energy:

δHNLZ(x) ≃ 2gn0δn(x)+AHFgn0

(

µBB

hδνhf

)

δn(x), (6)
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Therefore, accounting for nonlinear Zeeman contri-

bution will directly result in a renormalization of the

high-field scattering length

a∗ = a

(

1 +
1

2
AHF

µBB

hδνhf

)

. (7)

Now, by inverting (2) and expanding the resulting

B(a) dependence into the Taylor series (under the ex-

perimentally satisfied conditions abg ≪ a and ∆ ≪ B0)

B(a) ≃ B0

{

1−
∆

B0

[

(abg
a

)

+
(abg

a

)2

+ ...

]}

(8)

one obtains

a∗ ≃ γa+O(abg/a,∆/B0) (9)

for an explicit form of the renormalized scattering length

due to Breit–Rabi–Zeeman splitting with

γ ≡ 1 +
1

2
AHF

(

µBB0

hδνhf

)

. (10)

To find the change in b2 in the presence of the

quadratic Zeeman effect one simply replaces the orig-

inal (Zeeman-free) scattering length a in (1) with its

renormalized form a∗ given by (9), which results in a

nonlinear contribution to the shift of the critical tem-

perature, specifically

∆Tc

T 0
c

≃ b2

(

a∗

λT

)2

. (11)

Furthermore, by using (9), one can rewrite (11) in terms

of the original scattering length a and renormalized am-

plitude b∗2 as follows

∆Tc

T 0
c

≃ b∗2

(

a

λT

)2

, (12)

where the coefficient due to the Breit–Rabi–Zeeman

contribution is

b∗2 ≃ γ2b2 (13)

with γ defined earlier.

Let us consider the particular case of the B0 ≃ 403G

resonance of the hyperfine |F,mF 〉 = |1, 1〉 state of 39K.

For this case [41], S = 1/2, mF = 1, I = 3/2, and

δνhf ≃ 468MHz. These parameters produce AHF = 3/4

and γ ≃ 1.5 which readily leads to the following estimate

of the quadratic amplitude contribution due to the HF

mediated Breit–Rabi–Zeeman effect, b∗2 ≃ 2.25b2 ≃ 42.3

(using the mean-field value b2 ≃ 18.8 [31]), in a good

agreement with the observations [32]. It is interesting

to point out that the obtained value of γ for 39 K BEC

is a result of a practically perfect match between the

two participating energies: Zeeman contribution at the

Feshbach resonance field, µBB0 ≃ 4 · 10−25 J, and the

contribution due to Breit–Rabi hyperfine splitting be-

tween two ground states, hδνhf ≃ 3 · 10−25 J.

And finally, an important comment is in order re-

garding the applicability of the present approach (based

on the Taylor expansion of (2)) to the field-induced

modification of the linear contribution (defined via the

amplitude b1 in (1)) to the shift in Tc. According to the

experimental curve depicting ∆Tc vs a/λT behavior, the

linear contribution is limited by 10−3 ≤ a/λT ≤ 5·10−3.

Within the Feshbach-resonance interpretation, this cor-

responds to a low-field ratio a/abg ≃ 1 which invalidates

the Taylor expansion scenario based on using a small

parameter abg/a ≪ 1 applicable in high fields only. Be-

sides, as we have demonstrated earlier, the linear Zee-

man effect (valid at low fields only) is not responsible

for any tangible changes of BEC properties. Therefore,

another approach is needed to properly address the field-

induced variation (if any) of the linear contribution b1.

To conclude, it was shown that accounting for

a hyperfine-interaction induced Breit–Rabi nonlinear

(quadratic) Zeeman term in the mean-field approxima-

tion can explain the experimentally observed shift in the

critical temperature Tc for the 39K condensate. It would

be interesting to subject the predicted universal relation

(13) to a further experimental test to verify whether or

not it can also explain the shift in other bosonic-atom

condensates.
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