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Magnetic susceptibility of the quark matter in QCD
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Magnetic susceptibility in the deconfined phase of QCD is calculated in a closed form using a recent

general expression for the quark gas pressure in magnetic field. Quark selfenergies are entering the result via

Polyakov line factors and ensure the total paramagnetic effect, increasing with temperature. A generalized

form of magnetic susceptibility in nonzero magnetic field suitable for experimental and lattice measurements

is derived, showing a good agreement with available lattice data.
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I. Introduction. A possibility of strong magnetic

fields (MF) in astrophysics [1, 2] as well as in heavy

ion collisions [3, 4], see [5] for a review, poses an impor-

tant question: how the QCD matter react to MF and, in

particular, whether it is paramagnetic or diamagnetic.

This topic has caused a vivid interest in the physical

community recently [6–9] and the first numerical results

have been obtained for the magnetic susceptibility at

zero and finite temperature in [6], magnetization in [7],

magnetic susceptibility as a function of temperature in

[8], and pressure in MF at finite temperature [9].

In the analytical approach one should derive these

results from the quark pressure P̄q(B, T ) in MF B and

temperature T in the deconfined phase of QCD for

T > Tc and from the corresponding hadron pressure

in the confining region.

The magnetic contribution to the quark pressure was

considered mostly in the framework of effective field the-

ories [10]. We shall follow the standard approximation

[11], generalized with inclusion of the vacuum QCD ef-

fects.

Recently the quark pressure in MF P̄q(B, T ) was cal-

culated in a simple closed form, in [12], where the sum

over all Landau levels was expressed in terms of mod-

ified Bessel functions with correct limits for large and

small MF. It is important, that in our approach the ef-

fect of the QCD vacuum enters in the form of Polyakov

lines, which correct the free quark contribution. More-

over in [13] a further analysis of quark mass dependence

of the transition temperature Tc(B) was done, explain-

ing the observed [14] decreasing behavior of Tc(B) for

small masses mq.

It is a purpose of the present paper to study mag-

netic susceptibility (MS) of the quark matter as a func-
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tion of temperature using the approach of [12, 13], and

to compare the resulting curves with the numerical data

of [7–9].

The paper is organized as follows. In the next sec-

tion we define the basic quantities and discuss their de-

pendence on B, T , and mq in the case of zero chemical

potential µ. In section III a detailed comparison with

lattice data is done and in the final section a summary

and prospectives are given.

II. General formalism. We consider the quark gas

in MF, where each quark undergoes the influence of

background color fields, which can be expressed in terms

of field correlators (FC). The full thermal theory based

on FC was suggested in [15] and finally formulated in

[16, 17].

In the deconfined phase the quark pressure in MF is

[12]

P̄q(B, T ) =
∑

q

Pq(B, T ), eq ≡ |eq|,

Pq(B, T ) =
NceqBT

π2

∞
∑

n=1

(−)n+1

n
Ln
∑

n⊥,σ

εσn⊥
K1

(

nεσn⊥

T

)

,

(1)

Where

εσn⊥
=
√

m2
q + eqB(2n⊥ + 1− σ). (2)

It is expressed in terms of Polyakov loops L(T ),

which contain the FC contribution [16, 17], namely,

when one neglects the bound qq̄ pairs, appearing close

to Tc, then one can take into account only the large dis-

tance term V1(∞, T ), calculated via FC in [17, 18], and

the fundamental Polyakov loop in this approximation

(called in [16] the Single Line Approximation) is

L(T ) ≡ L(V )(T ) = exp

[

−
V1(∞, T )

2T

]

, (3)
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where V1(∞, T ) was found in [17], [18] from the field cor-

relators. Note, that V1(∞, T ) in L(V )(T ) entering (1),

is actually the static qq̄ interaction at large distances,

which was measured recently on the lattice [19] to be

approximately 0.5 GeV for T > Tc. We shall use the

form (3) with this value V1(∞, T ) = 0.5 GeV in what

follows, as well as direct lattice calculations from [20]

for the Polyakov loop

L(F )(T ) = exp

[

−
F1(∞, T )

2T

]

, (4)

where F1(∞, T ) is the free energy, containing all excita-

tions. It was shown in [16], that V1(∞, T ) > F1(∞, T )

and hence L(F )(T ) > L(V )(T ).

As it is shown in the appendix of [12], the sum over

n⊥, σ can be done explicitly in (1) with the result

Pq(B) =
NceqBT

π2

∞
∑

n=1

(−)n+1

n
Ln
[

mqK1

(nmq

T

)

+

+
2T

n

eqB +m2
q

eqB
K2

( n

T

√

eqB +m2
q

)

−

−
neqB

12T
K0

( n

T

√

m2
q + eqB

)

}

. (5)

Eq. (5) gives correct limits of Pq(B) for small and large

B. The quark pressure (5) depends on B, T , and mq.

We shall be first of all interested in the region of pa-

rameters, when eB ≪ T and mq ≪ T , corresponding

to the area studied on the lattice. In this case one can

define the magnetic susceptibility χ̂q(B, T )

Pq(B, T )− Pq(0, T ) =
χ̂q

2
(eqB)2 +O[(eqB)4]. (6)

To proceed one can expand the r.h.s. of (5) in the

Taylor series in powers of (eqB). To this end one can

exploit the relation

Kν(z) =
1

2

(z

2

)−ν
∫

∞

0

dte−t−z2/4ttν−1 (7)

and obtains

Pq(B, T )− Pq(0, T ) =
Nc(eqB)2

2π2

∞
∑

n=1

(−)n+1Ln ×

×
∑

k=0

(

eqBn

2Tmq

)k
(−)k

k!
Kk

(nmq

T

)

×

×

[

1

(k + 1)(k + 2)
−

1

6

]

. (8)

Note, that the first two terms O[(eqB)0] and

O[(eqB)1] in (8) identically vanish as well as the cubic

terms, while the quadratic terms can be written as

χ̂q

2
=

Nc

6π2

∑

n=1,2,...

(−)n+1LnK0

(nmq

T

)

. (9)

As one can see in (9) the quark system retains its para-

magnetic nature for any mq, T provided the Matsubara

series over n is convergent. We shall see however that

in (9) a strong compensation of different terms in the

series occurs.

Indeed, if L ∼ O(1) and mq/T < 1, one should keep

in (9) the sum over Matsubara frequencies, which yields

for the total MS

χ̂(T ) =
∑

q

(eq
e

)2

χ̂q(T ) =
Nc

3π2

∑

q

(eq
e

)2

Jq,

Jq ≡
∑

n=1,2,...

(−)n+1LnK0

(nmq

T

)

.
(10)

To find Jq we use the integral representation for K0

K0

(mqn

T

)

=
1

2

∫

∞

0

dω

ω
e−n(m2

q
/2T 2ω+ω/2), (11)

and summing over n in (10) one obtains the following

form for Jq,

Jq =
1

2

∫ ∞

0

dx

x

y(x)

1 + y(x)
, y(x) = L exp

(

−
1

x
−

m2
qx

4T 2

)

.

(12)

III. Results and discussion. Our resulting for-

mula for χ̂(T ) is given in (10), where the integral Jq is

defined in (12). One can see in (12) that the temperature

dependence of χ̂(T ) is defined mostly by the Polyakov

line factor L(T ), which grows strongly in the considered

region (see e.g. Fig. 3 of the first ref. in [20]). In addition

there is a weak logarithmic dependence from the upper

limit of integration ∼ ln(T/mq). One can see qualita-

tively the same type of behavior of χ̂(T ) in the lattice

data of [7–9]. However, to compare (10) with lattice re-

sults one must take into account, that MF on the lattice

is quantized and has a minimal value, dependent on the

lattice size, so that one actually refers to the generalized

MS χ̂(B, T ),

1

2
χ̂q(B, T ) =

Pq(B, T )− Pq(0, T )

(eqB)2
≡ f





√

eqB +m2
q

T



 ,

(13)

where m2
q enters always as m2

q + eqB, and therefore one

can introduce in (12) the effective quark mass

m2
qeff = m2

q + 〈eqB〉eff, (14)

where 〈eqB〉eff depends in general on the experimen-

tal setup or lattice configuration. One can estimate the

minimal value of 〈eB〉eff, on the lattice, 〈eB〉min ≈

6π/(Lsa)
2, which gives for the measurements in [8],
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Magnetic susceptibility in SI units (χ = 4π
137

χ̂) as a function of temperature for different L(T ), as obtained from (3) with

V1(∞, T ) = 0.5GeV (left plot) and L(F )(T ) from lattice data [20] (right plot), for different values of 〈eB〉eff in comparison

with lattice data [7] and [8]

〈eB〉min ≈ 0.023GeV2, and for those in [7] 〈eB〉min ≈

≈ 0.005GeV2. Therefore we keep in (12) mq → mqeff

as in (14) with 〈eB〉eff as a fitting parameter in the in-

terval 0.005−0.04GeV2. As a result we obtain two sets

of curves in Figure for χ = 4π
137 χ̂, which follow closely

the data points; one set, corresponding to V1(∞, T ) =

= 0.5GeV gives the best fit for 〈eB〉eff ≈ 0.025GeV2 for

the data of [8] and 〈eB〉eff ≈ 0.007GeV2 for the data

of [7]. Another set of curves, corresponding to L(F )(T ),

taken from lattice data [20], gives larger values of ef-

fective field 〈eB〉eff, 0.08 and 0.2 GeV2 for the data of

[8] and [7] correspondingly. One can see a good agree-

ment of our theoretical predictions and lattice results,

note also a close correspondence of the 〈eB〉min with the

fitted values of 〈eB〉eff for the curves on the left graph.

This fact shows a usefulness of our definition of the mqeff

and of our approach in general, where the main features

of the QCD quark matter are incorporated in Eq. (1),

derived from the quark path integrals in the QCD vac-

uum and containing quark selfenergies in the form of

the Polyakov lines.

IV. Conclusions. We have succeeded in obtaining

simple formulas for the MF dependence of the pressure

and the MS of the quark matter. Our resulting Eq. (10)

contains a simple tabulated integral Jq. One can see,

that χ̂(T ) strongly depends on T due mostly to the

Polyakov loop and is almost insensitive to quark masses

when T ≫ mq. Both features are supported by the data

of [8]. The resulting magnitude of χ̂(T ) is strongly re-

duced by the oscillating Matsubara series as compared

to the leading n = 1 term, and is in a good quantita-

tive agreement with lattice computations in [7], [8], and

[9], where the result of [7] is somewhat higher, due to

smaller effective mass values mqeff .

A good agreement of our predictions for MS with

available data is in line with similar agreement of the

transition temperature in MF in [12, 13], obtained in the

framework of our theoretical approach [15–18], which

can be a good starting point for detailed analysis of the

quark-hadron transition.
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