Неравновесные эффекты старения в критическом поведении структурно неупорядоченных планарных магнетиков

П. В. Прудников¹⁾, В. В. Прудников, И. С. Попов

Омский государственный университет им. Достоевского, 644077 Омск, Россия

Поступила в редакцию 20 февраля 2015 г. После переработки 16 марта 2015 г.

Осуществлено исследование методами Монте-Карло неравновесного критического поведения структурно неупорядоченных планарных магнетиков, описываемых двумерной XY-моделью. Для систем, эволюционирующих из высокотемпературного неравновесного начального состояния, проведено исследование влияния дефектов структуры на эффекты старения и нарушение флуктуационно-диссипативной теоремы для температур "замораживания" в низкотемпературной фазе. Впервые выявлены функциональные степенные зависимости предельных значений флуктуационно-диссипативного отношения от температуры.

DOI: 10.7868/S0370274X15080068

Эффекты старения – это нетривиальные явления, возникающие в неравновесном поведении систем с медленной динамикой [1, 2]. При медленной эволюции из неравновесного начального состояния старение системы проявляется в замедлении релаксационных процессов при увеличении времени, прошедшего с момента приготовления образца (его "возраста"), и сопровождается нарушением флуктуационнодиссипативной теоремы [3]. Исследование неравновесных процессов в магнитных материалах вызывает в последнее время значительный интерес [4]. Особое место среди магнитных материалов занимают низкоразмерные системы благодаря широкому спектру их технологических применений, в частности возможности повышения плотности записи информации на магнитных носителях [5–7]. Однако понижение размерности магнетиков сопровождается ростом флуктуаций спиновой плотности, проявлением эффектов критического замедления и "памяти" в неравновесном поведении низкоразмерных магнитных систем [8].

Широкий класс планарных магнетиков описывается двумерной XY-моделью, в рамках которой может быть рассмотрено поведение целого ряда физических систем (см. обзор [9]). Топологический фазовый переход Березинского–Костерлица–Таулесса в двумерной XY-модели физически связан с диссоциацией связанных пар вихрь–антивихрь (см. рис. 1) в точке перехода и проявляется в виде смены пространственной зависимости корреляционной функ-

Рис. 1. Неравновесный процесс аннигиляции пары вихрь–антивихрь (открытые и закрытые кружки соответственно) на временных этапах 300, 400, 500 MCS/спин (шаг Монте-Карло на спин) (верхний ряд). Неравновесный процесс пиннинга вихревых возбужений на дефектах структуры (закрытые квадраты): 250, 400, 2000 MCS/спин (нижний ряд)

ции [10]. Если статические свойства двумерной XYмодели можно считать достаточно хорошо изученными, то исследование неравновесного критического поведения таких систем и влияния на него структурного беспорядка остается актуальной задачей. Ожидается возникновение особенностей в неравновесном критическом поведении планарных магнитных систем, описываемых двумерной XY-моделью, связанных с явлением пиннинга вихрей и антивихрей, а также их пар в низкотемпературной фазе на дефектах структуры (рис. 1).

¹⁾e-mail: prudnikp@univer.omsk.su

Важной особенностью фазового перехода Березинского–Костерлица–Таулесса в двумерной *XY*-модели является то, что в низкотемпературной фазе каждая температура становится критической, т.е. наблюдается непрерывный каскад фазовых переходов второго рода. Это позволяет провести определенную аналогию между неравновесными эффектами в двумерной *XY*-модели и поведением спинового стекла [11–13]. Впервые представления о эффектах старения были введены при исследовании низкотемпературного поведения спиновых стекол [14–16].

Как известно [1, 2], особенности неравновесного поведения в системах с медленной динамикой, в частности явление старения, связаны с проявлением двухвременной зависимости таких характеристик системы, как корреляционная функция $C(t, t_w)$ и функции отклика $R(t, t_w)$, определяемых соотношениями

$$Ct, t_w) = \frac{1}{V} \int d^d x \left[\langle S(x, t) S(x, t_w) \rangle - \langle S(x, t) \rangle \langle S(x, t_w) \rangle \right],$$
(1)
$$R(t, t_w) = \frac{1}{V} \int d^d x \left. \frac{\delta[\langle S(x, t) \rangle]}{\delta h(x, t_w)} \right|_{h=0},$$

где угловые скобки соответствуют процедуре статистического усреднения, а квадратные – процедуре усреднения по различным примесным конфигурациям для структурно неупорядоченной системы. Временная переменная t_w характеризует возраст образца. Она называется временем ожидания. При неравновесных процессах эти динамические функции зависят не только от разности $t - t_w$, но и от каждой временной переменной в отдельности при $t - t_w$ и t_w , много меньших времени релаксации $t_{\rm rel}$ системы.

Флуктуационно-диссипативная теорема (ФДТ) связывает равновесные функцию отклика $R(t, t_w) = R_{eq}(t - t_w)$ и корреляционную функцию $C(t, t_w) = C_{eq}(t - t_w)$ для времен $t > t_w \gg t_{rel}$:

$$TR_{\rm eq}(t) = -\frac{dC_{\rm eq}(t)}{dt}.$$
 (2)

Для систем с медленной динамикой вводится обобщение ФДТ для описания неравновесных процессов через задание флуктуационнодиссипативного отношения (ФДО) [2]:

$$X(t,t_w) = \frac{TR(t,t_w)}{\partial_{t_w}C(t,t_w)}.$$
(3)

В соответствии с (2) и (3) в состоянии равновесия $X(t > t_w \gg t_{\rm rel}) = 1.$

Письма в ЖЭТФ том 101 вып. 7-8 2015

В неравновесном состоянии при проявлении эффектов старения $X(t,t_w) \neq 1$. Вводимое предельное значение ФДО

$$X^{\infty} = \lim_{t_w \to \infty} \lim_{t \to \infty} X(t, t_w) \tag{4}$$

становится новой универсальной характеристикой неравновесного поведения различных систем [17].

Определение X^{∞} позволяет ввести понятие эффективной температуры $T_{\rm eff}$ [18]:

$$T_{\rm eff} = \frac{T}{X^{\infty}},\tag{5}$$

как характеристики, задающей направление тепловых потоков при установлении равновесия в системе. Временная зависимость $T_{\rm eff}$ может быть непосредственно измерена для систем со "стекольной" фазой [19] в процессе их неравновесной эволюции. Важность определения $T_{\rm eff}$ для структурно неупорядоченных систем обусловлена тем, что $T_{\rm eff}$ характеризует флуктуации локальной критической температуры при неравновесных процессах, возникающие за счет сильного взаимодействия флуктуаций спиновой плотности через поле дефектов структуры [20].

В настоящей работе гамильтониан неупорядоченной системы был задан в виде

$$H = -J \sum_{\langle i,j \rangle} p_i p_j \mathbf{S}_i \mathbf{S}_j, \tag{6}$$

где J > 0 – обменный интеграл, \mathbf{S}_i – плоский классический спин, связанный с *i*-м узлом двумерной решетки, p_i – числа заполнения: $p_i = 1$, если в *i*-м узле решетки находится спин, и $p_i = 0$, если в узле находится дефект.

Функция отклика $R(t, t_w)$ не может быть непосредственно измерена экспериментально или получена методами компьютерного моделирования. Более удобной величиной является интегральная характеристика – динамическая восприимчивость:

$$\chi(t,t_w) = \int_{t_w}^t dt' R(t,t'),\tag{7}$$

Методами Монте-Карло восприимчивость $\chi(t, t_w)$ для двумерной системы может быть рассчитана на основе следующего соотношения:

$$\chi(t, t_w) = \frac{1}{L^2 h^2} \sum_i \overline{\langle \mathbf{h}_i(t_w) \mathbf{S}_i(t) \rangle},\tag{8}$$

где h_i – малое случайное бимодальное магнитное поле, черта сверху обозначает процедуру усреднения по различным реализациям магнитного поля на узлах решетки.

Рис. 2. Двухвременная зависимость автокорреляционной функции системы с p = 0.9 и T = 0.4 (a) и p = 0.8 и T = 0.1 (b). На вставках представлены зависимости $t_w^{\eta/2}C(t,t_w)$ от $(t-t_w)\ln t_w/t_w\ln(t-t_w)$ для демонстрации скейлинговой формы (12) автокорреляционной функции

В работе осуществлялось исследование временного поведения автокорреляционной функции

$$C(t, t_w) = \overline{\left[\left\langle \frac{1}{pL^2} \sum_{i} p_i \mathbf{S}_i(t) \mathbf{S}_i(t_w) \right\rangle\right]}$$
(9)

и обобщенной восприимчивости

$$\chi(t, t_w) = \overline{\left[\left\langle \frac{1}{pL^2h^2} \sum_i p_i \mathbf{h}_i \mathbf{S}_i(t) \right\rangle\right]}, \qquad (10)$$

где p задает концентрацию спинов на квадратной решетке с линейным размером L. При расчете χ флуктуационно-диссипативное отношение $X(t, t_w)$ (3) в соответствии с (7) определялось следующим выражением:

$$X(t,t_w) = T \frac{\partial \chi(t,t_w)}{\partial t_w} \left[\frac{\partial C(t,t_w)}{\partial t_w} \right]^{-1} = \frac{\partial [T\chi(t,t_w)]}{\partial C(t,t_w)}.$$
(11)

Концентрации спинов выбирались равными p = 1.0, 0.9 и 0.8. Моделирование осуществлялось в низкотемпературной фазе Березинского при температурах "замораживания" $T < T_{\rm BKT}(p)$ [21] с использованием алгоритма Метрополиса, адекватно задающего критическую динамику модели с односпиновыми переворотами [22]. Системе задавался старт из начального неравновесного высокотемпературного состояния с начальным значением намагниченности $m_0 \ll 1$, которое приготавливалось при температуре $T_0 \gg T_{\rm BKT}(p)$. Для исследования неравновесных характеристик системы рассматривалась решетка с линейным размером L = 256. В качестве единицы времени в работе используется шаг Монте-Карло на спин (MCS/спин), под которым понимается $N = pL^2$ переворотов спинов в единицу времени. Для получения двухвременных зависимостей моделирование проводилось для 16 различных значений времени ожидания: $t_w = 10, 20, 30, 40, 50, 100, 250, 500, 1000,$ 1500, 2000, 3500, 4000, 4500, 5000 и 10000 МСS/спин, при временах наблюдения $t - t_w = 50000 \,\mathrm{MCS/cnuh}$. Исследование двухвременной зависимости обобщенной восприимчивости системы осуществлялось с использованием метода малых случайных полей [23]. Для этого в момент t_w к гамильтониану (6) добавлялось слагаемое вида $\sum_{i}^{N} p_i \mathbf{S}_i \mathbf{h}_i$, где амплитуда hбимодального случайного поля $h_i = \pm h$ была выбрана равной 0.04. Использование данного метода требует проведения расчетов для каждого времени ожидания t_w отдельно. При моделировании "чистой" системы с p = 1 проводилось статистическое усреднение по 6000 прогонок. При моделировании структурно неупорядоченной ХУ-модели усреднение вычисляемых величин проводилось по 3000 примесных конфигураций и 15 статистическим прогонкам для каждой примесной конфигурации.

Полученные двухвременные зависимости для автокорреляционной функции (рис. 2) явно демонстрируют замедление релаксационных процессов с увеличением t_w . Данные эффекты старения, проявляющиеся на временах $t - t_w \simeq t_w$, усиливаются с увеличением концентрации дефектов структуры. На больших временах наблюдения ($t - t_w \gg t_w \gg 1$) поведение автокорреляционной функции характеризуется более быстрым, чем в режиме старения, степенным режимом спада: $C(t, t_w) \sim (t/t_w)^{-\Delta_c}$. Было выявлено, что с ростом концентрации дефектов нача-

ло степенного режима сдвигается в область больших времен наблюдения.

Для получения величины флуктуационнодиссипативного отношения $X(t, t_w)$ (11) строились параметрические зависимости $T\chi$ от C, представленные на рис. 3.

Рис. 3. Параметрическая зависимость восприимчивости от автокорреляционной функции системы для системы с концентрацией спинов p = 0.9 и температурой T = 0.1

Для двумерной системы автокорреляционная функция в неравновесном критическом состоянии характеризуется следующей скейлинговой формой

$$C(t, t_w) = t_w^{-\eta(T, p)/2} \Phi\left[\xi(t - t_w)/\xi(t_w)\right], \qquad (12)$$

где η – критический индекс Фишера, $\xi(t)^2 \sim t/\ln t$ – корреляционная длина системы с модифицированной эффектами взаимодействия вихрей временной зависимостью [24].

Для определения скейлингового поведения автокорреляционной функции (12) были рассчитаны значения критического индекса Фишера для всех рассматриваемых концентраций спинов p и температур. При этом использовалась размерная зависимость $\langle m^2 \rangle \sim L^{-\eta(T,p)}$. Линейные размеры системы Lвыбирались в интервале 4–128. Температурные зависимости вычисленных значений индекса Фишера для различных концентраций p представлены на рис. 4. Видно, что рост концентрации дефектов приводит к увеличению критического индекса Фишера, хотя концентрационное влияние значительно слабее температурного.

Для подтверждения скейлинговой зависимости автокорреляционной функции (12) было осуществлено построение зависимости $t_w^{\eta/2}C(t,t_w)$ от $(t - t_w) \ln t_w/t_w \ln(t-t_w)$. Полученные результаты (см.

Письма в ЖЭТФ том 101 вып. 7-8 2015

Рис. 4. Температурные зависимости критического индекса Фишера η для различных спиновых концентраций p. Значения погрешностей меньше размера символов

вставки к рис. 2) демонстрируют "коллапс" на долговременном этапе эволюции с $t - t_w \gg t_w \gg 1$ для различных t_w на соответствующих p = 0.8, T = 0.1 и p = 0.9, T = 0.4 универсальных кривых, отвечающих скейлинговой функции $\Phi[\xi(t - t_w)/\xi(t_w)]$ в (12).

Предельное флуктуационно-диссипативное отношение (4) является универсальной характеристикой неравновесного критического поведения. Поэтому определение значений ФДО должно производиться на временных участках с $t - t_w \gg t_w \gg 1$, где реализуется скейлинговое поведение $C(t, t_w)$. Так, значения $X(t_w)$ определялись нами из зависимостей $T\chi(t,t_w)$ от $C(t,t_w)$ (рис. 3) в пределе $C \to 0$ на временных участках, на которых имела место скейлинговая зависимость для автокорреляционной функции (12). На рис. 3 и 5 данные участки выделены серым цветом. Были получены значения $X(t_w)$ для различных времен ожидания t_w (рис. 6). Затем к ним была применена экстраполяция с $t_w \to \infty$, т.е. $1/t_w \rightarrow 0$, с целью получения искомого предельного значения ФДО X^{∞} . Для p = 0.8 полученные в результате экстраполяции значения X^{∞} для различных температур в низкотемпературной фазе приведены на рис. 6. Итоговые зависимости флуктуационно-диссипативного отношения X^{∞} от температуры для различных спиновых концентраций представлены на рис. 7.

На основе анализа полученных значений $X^{\infty}(p,T) \leq T_{\rm BKT}(p)$ можно сделать вывод о том, что влияние структурного беспорядка приводит к увеличению предельного флуктуационно-диссипативного отношения X^{∞} с ростом концентрации дефектов для одинаковых температур "замораживания" $T \leq T_{\rm BKT}(p)$.

Рис. 5. Параметрическая зависимость восприимчивости от автокорреляционной функции системы для различных температур и спиновых концентраций. Серым цветом выделены участки, на которых наблюдается скейлинговая зависимость для $C(t, t_w)$

Рис. 6. Получение значений предельного ФДО $X^{\infty}(T)$ для системы со спиновой концентрацией p = 0.8 путем экстраполяции $X(t_w)$ при $t_w^{-1} \to 0$

При заданной температурой зависимости предельного ФДО в виде $X^{\infty} \sim T^{\lambda}$ показатель температурной зависимости $\lambda(p)$ для различных концентраций примеси принимает следующие значения: $\lambda(p = 1.0) = 1.988(23), \lambda(p = 0.9) = 1.848(22)$ и $\lambda(p = 0.8) = 1.838(31)$. Экстраполяция полученных температурных зависимостей для $X^{\infty}(p,T) \leq T_{\rm BKT}(p)$ при $T \to 0$ дает $\lim_{T\to 0} X^{\infty} = 0$ для всех рассмотренных примесных концентраций.

Отличие полученного в данной работе для "чистой" системы в точке перехода Березинского значения $X^{\infty}(p = 1.0, T_{\rm BKT}) = 0.444(26)$ от аналитического значения $X^{\infty}(p = 1.0, T_{\rm BKT}) = 0.5$, рассчитанного в безвихревом приближении [17], позволяет оценить вклад вихревой динамики в флуктуационно-диссипативное отношение. Полученные значения X^{∞} для системы со структурным беспорядком, $X^{\infty}(p = 0.9, T_{\rm BKT}) = 0.357(29)$ и

Рис. 7. Зависимости предельного ФДО X^{∞} от температуры для систем с концентрациями спинов p = 1.0, 0.9 и 0.8. На вставке – зависимости эффективной температуры $T_{\rm eff}$ системы от температуры для тех же спиновых концентраций p

 $X^{\infty}(p = 0.8, T_{\rm BKT}) = 0.284(20)$, свидетельствуют о существенном влиянии дефектов структуры на неравновесное критическое поведение системы.

В работе [25] проводилось исследование температурной зависимости ФДО для "чистой" системы. При этом для $X^{\infty}(T)$ была получена линейная зависимость вида $X^{\infty}(T) = 0.5T/T_{\text{BKT}}$. Однако для получения значений $X^{\infty}(T)$ при проведении экстраполяции $t_w \to \infty$ в [25] использовались только три значения времени ожидания: $t_w = 100, 300$ и 1000 MCS/спин. Нами для осуществления подобной экстраполяции использовалось более десяти значений t_w в широком диапазоне их изменения (от 10 до 10000 MCS/спин). Это позволило контролировать выход $X(t, t_w)$ на универсальный скейлинговый режим и корректно осуществить предельный переход к определению $X^{\infty}(T)$. Кроссоверные эффекты в поведении $T\chi(C)$, а следовательно, и зависимости $X(t, t_w)$ заметно проявляются в области высоких температур, близких к $T_{\text{BKT}}(p)$, что наглядно демонстрирует рис. 5.

Для эффективной температуры $T_{\rm eff} = T/X^{\infty}$ согласно ее определению (5) имеют место степенные температурные зависимости $T_{\rm eff}(p) \sim T^{1-\lambda(p)}$, представленные на вставке к рис. 7. Можно сделать вывод, что с понижением температуры релаксационная динамика системы в фазе Березинского существенно замедляется. При этом проявление эффектов старения становится значительным. Наличие дефектов структуры приводит к дальнейшему усилению эффектов старения.

Итак, в результате проведенного нами численного исследования были впервые получены значения флуктуационно-диссипативного отношения для двумерной структурно неупорядоченной ХУ-модели во всей низкотемпературной фазе. Выявлены функциональные степенные зависимости предельного ФДО от температуры: $X^{\infty}(p, T \leq T_{\text{BKT}})(p) \sim T^{\lambda(p)}$. Определены значения показателя $\lambda(p)$ для ряда спиновых концентраций р. Установлено, что введение структурного беспорядка приводит к повышению предельного значения $\Phi \Box O X^{\infty}(p)$. Полученные результаты могут найти свое применение в экспериментальном исследовании неравновесных свойств критической динамики низкоразмерных магнетиков. Кроме того, они должны учитываться при создании приборов спинтроники на основе мультислойных магнитных структур.

Работа выполнена при поддержке Российского научного фонда (проект #14-12-00562). Для проведения расчетов были использованы ресурсы суперкомпьютерного комплекса МГУ им. М.В. Ломоносова и межведомственного суперкомпьютерного центра РАН.

- S. Ciliberto, R. Gomez-Solano, and A. Petrosyan, Annu. Rev. Cond. Mat. Phys. 4, 11 (2013).
- 2. L. Berthier and J. Kurchan, Nat. Phys. 9, 310 (2013).
- 3. Г. Н. Бочков, Ю. Е. Кузовлев, УФН **183**, 617 (2013).
- 4. R. Wiesendanger, Rev. Mod. Phys. 81, 1495 (2009).

- R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, J. Phys.: Cond. Mat. 26, 103202 (2014).
- T. J. Fal, J. I. Mercer, M. D. Leblanc, J. P. Whitehead, M. L. Plumer, and J. van Ek, Phys. Rev. B 87, 064405 (2013).
- 7. T.W. McDaniel, J. Appl. Phys. 112, 013914 (2012).
- А.Б. Дровосеков, Н.М. Крейнес, Д.И. Холин, А.В. Королев, М.А. Миляев, Л.Н. Ромашев, В.В. Устинов, Письма в ЖЭТФ 88, 126 (2008).
- 9. С.Е. Коршунов, УФН **3**, 233 (2006).
- В. Л. Березинский, ЖЭТФ 59 907 (1970); В. Л. Березинский Низкотемпературные свойства двумерных систем, Физматлит, М. (2007).
- 11. K. Binder, A. P. Young, Rev. Mod. Phys. 58, 801 (1986).
- M. Mezard, G. Parisi, and M. Virasoro, Spin-Glass theory and Beyond, World Scientific, Singapore (1987), 461 p.
- S. Franz, M. Mézard, G. Parisi, and L. Peliti, Phys. Rev. Lett. 81, 1758 (1998).
- M. Alba, M. Ocio, and J. Hammann, Europhys. Lett. 2, 45 (1986).
- E. J. Vincent and J. Hammann, J. Phys. C 20, 2659 (1987).
- Ageing and the Glass Transition, ed. by M. Henkel, M. Pleimling, R. Sanctuary, Lect. Notes Phys. Springer, Berlin Heidelberg (2007), v. 716, 349 p.
- P. Calabrese and A. Gambassi, J. Phys. A 38, R133 (2005).
- 18. L.F. Cugliandolo, Phys. Rev. E 55, 3898 (1997).
- N. Gnan, C. Maggi, G. Parisi, and F. Sciortino, Phys. Rev. Lett. **110**, 035701 (2013).
- L. F. Cugliandolo, J. Phys. A: Math. Theor. 44, 483001 (2011).
- P. V. Prudnikov and I. S. Popov, J. Phys.: Conf. Ser. 510, 1742 (2014).
- В. В. Прудников, П. В. Прудников, С. В. Алексеев, И. С. Попов, ФММ 115, 1254 (2014).
- L. Berthier, P. C. W. Holdsworth, and M. Sellitto, J. Phys. A 34, 1805 (2001).
- A. J. Bray, A. J. Briant, and D. K. Jervis, Phys. Rev. Lett. 84, 1503 (2000).
- S. Abriet and D. Karevski, Eur. Phys. J. B 37, 47 (2004).