
Pis’ma v ZhETF, vol. 101, iss. 9, pp. 723 – 729 c© 2015 May 10

ПО ИТОГАМ ПРОЕКТОВ
РОССИЙСКОГО ФОНДА ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Проект РФФИ # 12-02-00594

Classical integrable systems and Knizhnik–Zamolodchikov–Bernard

equations

G. Aminov+∗1), A. Levin+× 1), M. Olshanetsky+∗ 1), A. Zotov+∗◦ 1)

+Institute of Theoretical and Experimental Physics, 117218 Moscow, Russia

∗ Moscow Institute of Physics and Technology (State University), 141700 Dolgoprudny, Russia
3mm ×Department of Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia

◦Steklov Mathematical Institute of the RAS, 119991 Moscow, Russia

Поступила в редакцию 6 April 2015

This paper is a short review of results obtained as part of The Russian Foundation for Basic Research

project 12-02-00594. We mainly focus on interrelations between classical integrable systems, Painlevé–
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1. Zero curvature equations. We consider inte-

grable equations in classical and quantum Hamiltonian

mechanics. In classical mechanics they are described

usually by the Lax equations

∂tL = [L,M ]. (1)

Here L and M are matrices (operators), depending on

the phase variables u = (u1, . . . , un), v = (v1, . . . , vn), S

and additional (spectral) parameter z, L = L(u, v, S; z),

M = M(u, v, S; z). We assume that z ∈ Σ where Σ

is a torus or its degenerations. The variables u, v are

the canonical Darboux variable {vj , uk} = δjk. The Lax

equations can be derived from the d = 4 (super) Yang–

Mills theories with the gauge group G compactified on

Σ. In this case L is identified with a scalar field taking

values in the adjoint representations (the Higgs field)

restricted on Σ, while M is an element of the Lie alge-

bra of the gauge transformations. The variables S are

elements of the Lie algebra Lie(G). They Poisson com-

mute with (u, v) and their brackets are the Poisson–Lie

brackets on Lie(G). In terms of the Lax operators the

Poisson brackets are defined by means of the classical

r-matrices (see examples below).

1)e-mails: aminov@itep.ru; alevin@hse.ru; olshanet@itep.ru;

zotov@mi.ras.ru

Eq. (1) describes an autonomous Hamiltonian in-

tegrable mechanics. To come to the non-autonomous

Hamiltonian system we replace (1) by

∂tL− κ∂zM = [L,M ], (2)

where κ is a parameter. This equation is the monodromy

preserving condition for the linear equation

(κ∂z + L)ψ = 0, (3)

and L now plays the role of connection. In particular,

(2) describes the Painlevé equation, Schlesinger system

and their generalizations. In the limit κ → 0 we come

to (1).

Another generalizations of (1) are the Zakharov–

Shabat equations for 1+1 integrable field theories which

possess the soliton type solutions:

∂tL− k∂xM = [L,M ]. (4)

One can also consider a generalization of (4) and (2)

given by

∂tL− κ∂zM − k∂xM = [L,M ]. (5)

We refer to the models described by this equation as the

Painlevé field theories.
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The zero curvature equations (1)–(4) keep their

forms under the gauge transformations

D + L −→ D + gLg−1 − (Dg)g−1,

∂t +M −→ ∂t + gMg−1 − (∂tg)g
−1,

(6)

where the differential operator D is given by

D = 0, ∆ = κ∂z, D = k∂x, D = k∂x + κ∂z (7)

for the Eq. (1), (2), (4), (5) respectively.

The purpose of the paper is to show that all types of

zero-curvature equations can be described in a similar

way, i.e. there exist a universal type Lax pairs which can

be used for all the cases. They describe a wide class of

integrable systems and related problems. We start from

the classical integrable mechanics, which deals with two

types of models – many-body systems (interacting parti-

cles) and integrable cases of motion of solid body in mul-

tidimensional space. First, we demonstrate that many-

body systems of Calogero–Ruijsenaars type can be for-

mulated as integrable tops of Euler–Arnold type. Using

special gauge transformation the Ruijsenaars–Schneider

model is represented in the form

L(z, S, η) = tr2[R
η
12(z)S2], (8)

where the relativistic deformation parameter η enters

the Lax matrix as the Planck constant of a certain quan-

tum R-matrix. Being formulated as tops the many-body

systems are then naturally included into a more gen-

eral class of integrable models, which consists of spin

chains and Gaudin models. The top-like description also

makes it easy to pass to 1+1 integrable equations in-

cluding one-dimensional Landau–Lifshitz type magnet-

ics, principal chiral models and their generalizations.

At the same time the Gaudin models can be consid-

ered as autonomous version of the Schlesinger systems

– the monodromy preserving equations which can be

reduced to Painlevé equations. Finally, we come to the

quantum version of the Schlesinger models described

by the Knizhnik–Zamolodchikov–Bernard (KZB) equa-

tions well-known in studies of conformal field theories.

The consistency condition for the KZB connections is

guarantied by identities for the initial R-matrix enter-

ing (8). In the end we briefly discuss that the equations

of Painlevé–Schlesinger type can be generalized to the

so-called Painlevé field theories.

2. Calogero-Moser model as integrable top.

Let us start with the most simple example (more com-

plicated and general cases can be found in [1–3]) – 2-

body Calogero–Moser model. The Hamiltonian is given

as

HCM =
1

2
v2 − ν

v

2u
=

1

2

(

v −
ν

2u

)2

−
1

2

ν2

(2u)2
(9)

in the canonical coordinates {v, u} = 1. Its Lax matrix

LCM(z) =









v −
ν

2u
+
ν

z

ν

2u
+
ν

z

−
ν

2u
+
ν

z
−v +

ν

2u
+
ν

z









(10)

can be gauged transformed to the following form:

L(z, S) =
1

z
×

×





S11 − z2S12 S12

S21 − z2(S11 − S22)− z4S12 S22 + z2S12



 .

(11)

The residue matrix is given by the following change of

variables:

S =

(

S11 S12

S21 S22

)

=







1

2
v u −

1

2

v

u

1

2
(v u3 − 2νu2) −

1

2
v u+ ν






,

(12)

i.e. the canonical variables v, u are transformed into the

generators of the Lie algebra gl2 with the Poisson–Lie

brackets:

{Sij , Skl} = δilSkj − δkjSil. (13)

The Hamiltonian (9) acquires the form

H = −S12(S11 − S22) =
1

2
tr [S J(S)] ,

J(S) = −

(

S12 0

S11 − S22 −S12

) (14)

of the integrable (rational) top of Euler–Arnold type

with the inverse inertia tensor J(S). Equations of mo-

tion

Ṡ = {H,S} = [S, J(S)], (15)

can be written in the Lax form (1) with the Lax matrix

(11) and the M -matrix

M(z, S) = −

(

S12 0

S11 − S22 + 2z2S12 −S12

)

. (16)

The top form of the Calogero–Moser model allows us

to relate to it the non-dynamical r-matrix. Indeed, the

classical r-matrix provides the Poisson brackets between

matrix elements of the Lax matrix in the form:

∑

i,j,k,l

Eij ⊗ Ekl {Lij(z), Lkl(w)} :=

= {L1(z), L2(w)} = [L1(z) + L2(w), r12(z − w)], (17)

Письма в ЖЭТФ том 101 вып. 9 – 10 2015



Classical integrable systems and Knizhnik–Zamolodchikov–Bernard equations 725

where for gl2: L1 = L ⊗ 1 =

(

L11 12×2 L12 12×2

L21 12×2 L22 12×2

)

,

L2 = 1 ⊗ L =

(

L 02×2

02×2 L

)

. In our example the

classical r-matrix equals

r12(z) =













1/z 0 0 0

−z 0 1/z 0

−z 1/z 0 0

−z3 z z 1/z













. (18)

It satisfies the classical Yang–Baxter equation

[r12(z − w), r13(z)] + [r12(z − w), r23(w)] +

+ [r13(z), r23(w)] = 0 (19)

and is simply related to the Lax matrix:

L(z) = tr2 [r12(z)S2] . (20)

3. Relativistic models and quantum R-

matrices. As it was shown in [3] the construction of

the top model can be generalized to the relativistic

deformation of integrable systems. The simplest exam-

ple here is the rational 2-body Ruijsenaars–Schneider

model. It is described by the Hamiltonian

HRS =
2u− η

2u
ev/c +

2u+ η

2u
e−v/c, (21)

where η is the coupling constant and c is the light speed.

As in the previous case the Ruijsenaars–Schneider

model can be rewritten in the form of the (relativistic)

top. The Lax matrix has the following form

Lη(z,S) =
1

z
S2×2 +

tr(S)

η
12×2 − (z + η)×

×

(

S12 0

(S11 − S22) + (η2 + z2 + ηz)S12 −S12

)

(22)

with the change of variables

S11(v, u) = −
u

2

(

ev/c − e−v/c
)

,

S12(v, u) =
1

2u

(

ev/c − e−v/c
)

,

S21(v, u) = −
u

2

[

ev/c(u − η)2 − e−v/c(u+ η)2
]

,

S22(v, u) =
1

2u

[

ev/c(u − η)2 − e−v/c(u + η)2
]

(23)

and equation of motion

Ṡ = [S, Jη(S)], Jη(S) =
trS

η
12×2 −

−

(

ηS12 0

η3S12 + η(S11 − S22) −ηS12

)

(24)

generated by the Lax equations (1) with (22) and

M(z,S) = −L(z,S) (i.e. the M -matrix here is of the

same form as the L-matrix (11) in the non-relativistic

case up to the sign).

The Poisson brackets are defined by the quadratic

r-matrix structure

{Lη
1(z) , L

η
2(w)} = [Lη

1(z)L
η
2(w), r12(z − w)], (25)

with the rational r-matrix (18). The quadratic Poisson

brackets for the matrix elements of S is the classical

Sklyanin algebra:

{S1,S2} = [Jη(S)1 S2, P12]. (26)

The most important statement here is the following:
while the non-relativistic top is described by the clas-
sical r-matrix (20) the relativistic top is related in the
same way to the quantum R-matrix:

Lη(z,S) =

N
∑

i,j,k,l=1

R η
ij,kl(z)Eij Slk = tr2 [R

η
12(z)S2] ,

(27)

where the relativistic deformation parameter η plays the

role of the Planck constant. That is to say that Rη
12(z)

satisfies the quantum Yang–Baxter equation:

Rη
12(z − w)Rη

13(z − y)Rη
23(w − y) =

= Rη
23(w − y)Rη

12(z − w)Rη
13(z − y). (28)

With a knowledge of the Lax matrix we know the quan-

tum R-matrix as well. For the case (22) we have:

R~(z) =













~−1 + z−1 0 0 0

−~− z ~−1 z−1 0

−~− z z−1 ~−1 0

−~3 − 2z~2 − 2~z2 − z3 ~+ z ~+ z ~−1 + z−1













.

(29)

The classical limit

Rη
12(z) = ~

−11⊗ 1 + r12(z) + ~m12 +O(~2) (30)

provides the classical Yang-Baxter equation (19) from

the quantum one (28) and corresponds to the non-

relativistic limit at the level of mechanical systems:

η := ν/c, c→ ∞ : HRS =

= −η−1 trS(v, u) = 2 +
2

c2
HCM + o

(

1

c2

)

(31)

and S(v, u) = − 1
2 lim
c→∞

cS(v, u).
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4. Spin chains and Gaudin models. After inte-

grable many-body systems are included into the class

of integrable tops we can proceed to more complicated

models. Having the quadratic Poisson structure (25) the

classical periodic spin chain with n sites is naturally de-

fined via the monodromy matrix

T (z,S1, ...,Sn) = T (z) = Lη(z−z1,S
1) ... Lη(z−zn,S

n),

(32)

where zk are the inhomogeneities parameters. In view

of (27) it takes the form:

T0(z) = tr1...n
[

Rη
01(z − z1) ... R

η
0n(z − zn) (S

1)1 ... (S
n)n
]

,

(33)

where the index “0” corresponds to the common ma-

trix space (auxiliary space) of Lax matrices Lη(Sn). We

drop it in formulae below. In the non-relativistic limit

η → 0 the monodromy matrix (33) gives rise to the Lax

operator of the Gaudin model:

LG(z) =

n
∑

a=1

tra [r0a(z − za)S
a]

(20)
=

n
∑

a=1

L(z − za, S
a).

(34)

The Poisson structures for both – spin chains (32)

and Gaudin models (34), (33) are direct sums oven

a = 1, ..., n of 1-site Poisson structures (26), and (13)

respectively. For example, the Poisson structure for the

Gaudin model is

{Sa
1 , S

b
2} = δab [Sa

2 , P12]. (35)

The Hamiltonians appear by evaluating

1

2
tr
[

LG(z)
]2

=
1

2

n
∑

a=1

tr (Sa)
2

(z − za)2
−

ha
z − za

+ 2h0. (36)

The direct computation gives

ha = −

n
∑

c 6=a

tr12 [r12(za − zc)S
a
1S

c
2] ,

h0 =
1

2

n
∑

b,c=1

tr
[

Sb M(zb − zc, S
c)
]

,

(37)

where M(z, S) is the M -operator (16). The Hamiltoni-

ans (37) generate equations of motion


















∂taS
b = −[Sb, L(za − zb, S

a)], b 6= a = 1, ..., n,

∂taS
a =

n
∑

c 6=a

[Sa, L(zc − za, S
c)], a = 1, ..., n

(38)

and

∂t0S
a = [Sa, J(Sa)] +

∑

c 6=a

[Sa,M(za − zc, S
c)]. (39)

Eqs. (38) and (39) have the Lax form

∂tdL
G(z) = [LG(z),MG

d ], d = 0, 1, ..., n (40)

with MG
a (z) = −L(z − za, S

a), a = 1, ..., n, and

MG
0 (z) =

n
∑

c=0
M(z − zc, S

c), M(z, S) is from (16).

5. Soliton equations. For the homogeneous spin

chain (33) (zk = 0) the continuous limit leads to the

1+1 field theories, which are integrable in the sense of

the classical inverse scattering method. The equations of

motion are defined by the Zakharov–Shabat equations

(4):

∂tU − k∂xV = [U, V ], (41)

where U and V are gl2-valued functions on the circle

(with the coordinate x). They also depend on the spec-

tral parameter and dynamical fields S(x). The mechan-

ical (0+1) models described by non-dynamical r-matrix

can be generalized to 1+1 field theory (41) straightfor-

wardly: one should simply use the same Lax operator as

for the top model:

ULL[z, S(x)] = L[z, S(x)] = tr2[r12(z)S2(x)]. (42)

It leads to Landau–Lifshitz type equation (the com-

ponents of S(x) in the Pauli matrices basis S(x) =

=
∑3

1 σaSa(x) can be considered as components of the

magnetization vector in one dimensional ferromagnetic):

∂tS = α[S, Sxx] + [S, J(S)], (43)

where Sxx = ∂2xS, J(S) is the same as in the top case

and α = λ2/(8k2) is a constant (S2 = λ2 1, ∂xλ = 0).

The equations of motion (43) with J(S) (14) are of the

form:



















∂tS11 = αS12∂
2
xS21 − αS21∂

2
xS12 − 2S12S11,

∂tS21 = 2αS21∂
2
xS11 − 2αS11∂

2
xS21 − 2S12S21 + 4S2

11,

∂tS12 = 2αS11∂
2
xS12 − 2αS12∂

2
xS11 + 2S2

12

(44)

are described by the Hamiltonian

HLL =
1

2

∮

dx
{

tr(S2
x) + tr[SJ(S)]

}

(45)

and are presented in the form (41). The matrix V is

obtained as follows:

V LL = −[z−1L(z, S)− 2M(z, S) + L(z, h)]/2, (46)

where L and M are from (11), (16) and matrix h is

equal to h = − k
4λ2 [S, Sx], Sx = ∂xS.
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Similarly to the Gaudin model, we can construct the

1+1 theory corresponding to U(z) with two poles:

U chiral[z, S1(x), S2(x)] = L[z−z1, S
1(x)]+L[z−z2, S

2(x)].

(47)

It is the principal chiral model. Equations of motion are

of the form:






∂tS
1 − k∂xS

1 = −2[S1, L(z1 − z2, S
2)],

∂tS
2 + k∂xS

2 = −2[S2, L(z1 − z2, S
1)].

(48)

6. Painlevé–Calogero correspondence. The six

Painlevé equations were discovered in the 1900–1910 pe-

riod as the second order differential equations that have

only poles in the complex plane as movable singularities.

The most general equation – the Painlevé VI (PVI) has

the following form:

d2X

dt2
=

1

2

(

1

X
+

1

X − 1
+

1

X − t

)(

dX

dt

)2

−

−

(

1

t
+

1

t− 1
+

1

X − t

)

dX

dt
+
X(X − 1)(X − t)

t2(t− 1)2
×

×

(

α+ β
t

X2
+ γ

t− 1

(X − 1)2
+ δ

t(t− 1)

(X − t)2

)

, (49)

where (α, β, γ, δ) are arbitrary complex constants. The

PVI can be represented in the elliptic form

d2u

dτ2
=

3
∑

a=0

ν2a℘
′(u + ωa), (ω0, ω1, ω2, ω3) =

=

(

0,
1

2
,
τ + 1

2
,
τ

2

)

(50)

via the change of variables X = ℘(u)−e1
e2−e1

, t = e3−e1
e2−e1

with ek = ℘(ωk) and identification of constants

(ν20 , ν
2
1 , ν

2
2 , ν

2
3) = 1

(2πi)2 (α,−β, γ,
1
2 − δ). Here ℘(x) is

the Weierstrass ℘-function on the elliptic curve Στ =

C/(Z+ τZ), Im τ > 0. Eq. (50) is described as the

Hamiltonian system with the Hamiltonian functionH =
1
2v

2 −
∑3

a=0 ν
2
a℘(u+ωa) and canonical Poisson bracket

{v, u} = 1. The system is non-autonomous since the po-

tential explicitly depends on the moduli τ (of Στ ) which

is the “time” variable. It is non-autonomous version of

the BC1 Calogero-Inozemtsev system. In the case when

νa = 1
2ν for all a we come to the elliptic two-particle

non-autonomous Calogero–Moser model

d2u

dτ2
= ν2℘′(2u). (51)

Similarly to the rational case the model (50) has 2 × 2

Lax pair [4] and can be formulated in the form of in-

tegrable top [5]. It is the non-autonomous version of

the Zhukovsky–Volterra gyrostat. Namely, it was shown

in [5] that (50) can be written as dynamics of three-

dimensional complex-valued vector S = (S1, S2, S3):

∂τS = S× J(S) + S× ν
′, (52)

where J(S) = (J1S1 , J2S2 , J3S3), Jk = ℘(ωk), and

ν
′ = (ν′1, ν

′
2, ν

′
3) – vector of linear combinations of con-

stants νa from (50) multiplied by some ratios of theta-

constants. The fourth independent linear combination

of the constants ν′0 = 1
2

3
∑

c=0
νc appears to be the length

of S: ν′20 =
3
∑

α=1
S2
α. Eq. (52) can be also written in terms

of Sl(2,C)-valued matrix S =
3
∑

γ=1
σγSγ , where σγ are

the Pauli matrices, as

∂τS = [S, J(S)] + [S, ν′], (53)

where ν′ =
3
∑

γ=1
σγν

′
γ . It is generated by the quadratic

Hamiltonian

H =
1

2
tr [S J(S)] + tr(S ν′), (54)

and the linear Poisson–Lie brackets on sl∗(2,C):

{Sα, Sβ} = εαβγSγ . Explicit change of variables

Sα(v, u) and other details can be found in [5–7].

Eq. (53) is reduced to the non-autonomous elliptic

sl2-top when ν′1,2,3 = 0. This case corresponds to (51).

The (classical) Painlevé–Calogero correspondence

was suggested in [8]. It claims that the (Krichever’s) Lax

pair of the elliptic Calogero–Moser model can be also

used for the monodromy preserving equations, which

describe the higher rank Painlevé equations in the ellip-

tic form.

The Painlevé–Calogero correspondence can be for-

mulated as the following property of the quantum non-

dynamical R-matrix:

∂τR
~(z) = ∂z∂~R

~(z). (55)

Here we imply explicit dependence R = R(τ). For

the elliptic case the quantum R-matrix is the Baxter–

Belavin’s one. Plugging the expansion (30) of the clas-

sical limit into (55) we get a set of relations. The first

non-trivial is

∂τr
τ
12(z) = ∂zm

τ
12(z), (56)

where rτ12(z) = r12(z, τ) is the classical r-matrix. From

(56) it follows that

∂τL
τ (z, S) = ∂zM

τ (z, S), (57)
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where Lτ (z, S) = L(z, S, τ), Mτ (z, S) = M(z, S, τ),

and the derivative is taken with respect to explicit de-

pendence on τ . Therefore, we can consider the mon-

odromy preserving equations in time τ

dτL
τ (z, S)− ∂zM

τ (z, S) =

= [Lτ (z, S),Mτ(z, S)], S = S(τ) (58)

(dτ = d/dτ) as the non-autonomous version of the inte-

grable top’s equations of motion:

∂τS = [S, Jτ (S)]. (59)

Indeed, the total derivative dτL
τ (z, S) contains both –

the partial derivatives by explicit and implicit depen-

dence on τ :

dτL
τ [z, S(τ)] = dτ tr2[r

τ
12(z)S2] =

tr2

{

[∂τ r
τ
12(z)]S2

}

+ tr2

[

rτ12(z) (∂τS2)
]

. (60)

The first term is cancelled by ∂zM
τ (z, S) (57), and we

get (59).

Similarly, the Schlesinger system as the non-

autonomous Gaudin model [9]. The monodromy

preserving equations

∂zaL
G(z)− ∂zM

G, a(z) = [LG(z),MG, a(z)] (61)

and

∂τL
G(z)− ∂zM

G, 0(z) = [LG(z),MG, 0(z)] (62)

generate dynamics in time variables za and τ . They are

equivalent to non-autonomous versions of the Gaudin’s

equations of motion (38), (39):



















∂zaS
b = −[Sb, Lτ (za − zb, S

a)], b 6= a,

∂zaS
a =

n
∑

c 6=a

[Sa, Lτ (zc − za, S
c)]

(63)

for a, b = 1, ..., n and

∂τS
a = [Sa, Jτ (Sa)] +

∑

c 6=a

[Sa,Mτ (za − zc, S
c)]. (64)

The Hamiltonians and the Poisson structure of the

Schlesinger system are the same as for the Gaudin

model. Description of the elliptic Schlesinger system can

be found in [9].

7. Quantum Painlevé-Calogero correspon-

dence. The classical Painlevé-Calogero correspondence

(55)–(57) can be generalized to the quantum one in the

following sense (see [10]). The monodromy preserving

equation (2) is the compatibility condition of the linear

(isomonodromy) problem:






∂zΨ = −L(z, t)Ψ,

∂ tΨ = −M(z, t)Ψ,
Ψ =

(

ψ1

ψ2

)

. (65)

The main statement is that for all (2×2 linear problems)

Painlevé equations there exists a choice of coordinates

z, t and gauge fixation (6) such the linear problem (65)

is reduced to the scalar equation on ψ1

∂tψ1 =

[

1

2
∂2z +

1

2
detL(z)−

1

2
∂zL11(z) +M11(z)

]

ψ1,

(66)
and (66) describes the non-stationary Schrödinger equa-

tion for the potential of the classical mechanical model

– the classical Painlevé equation coming from (2). The

quantum potential may differ from the classical by only

“quantum shift” of the constants.

Let us give the example of the truncated PIII equa-

tion:
ü = 2ν2et sinh(2u). (67)

The linear problem was found in [11]:

L(z, t) =

(

u̇ 2νet/2 sinh(z − u)

2νet/2 sinh(z + u) −u̇

)

,

(68)

M(z, t) =

(

0 νet/2 cosh(z − u)

νet/2 cosh(z + u) 0

)

.

(69)
Then, we have the following quantization of (67):

∂tψ1 =
[

HIII(∂z, z)−HIII(u̇, u)
]

ψ1,

HIII(∂z, z) =
1

2
∂2z − ν2et cosh(2z).

(70)

8. Knizhnik–Zamolodchikov–Bernard equa-

tions. The KZB equation can be defined as quantiza-

tion of the linear problem (65) for the Schlesinger system

(61)–(64):
{

∇̂aψ = 0,

∇̂τψ = 0,
(71)

where
∇a = ∂za +

∑

c 6=a

rac(za − zc),

∇τ = ∂τ +
1

2

∑

b,c

mbc(zb − zc)
(72)

with r and m are from (56). The compatibility con-

dition of (71) requires classical Yang–Baxter equation

(19), heat equation (55), and
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[rab,mab] = 0, (73)

[rab,mac +mbc] + [rac,mab +mbc] = 0. (74)

It appears [12] that these identities can be proved in

the general form using the quantum Yang–Baxter equa-

tion (28) and another one:

R~

12R
~

23R
~

31 +R~

13 R
~

32R
~

21 = −N3℘′(~) 1⊗1⊗1, (75)

where R~

ab = R~

ab(za − zb).

Therefore, we get the quantization of the Schlesinger

system as consequence of the underlying quantum R-

matrix properties. The quantum R-matrix structure un-

derlies classical integrable systems including their rela-

tivistic extensions and Painlevé-Schlesinger equations as

well.

9. Painlevé field theory. To construct field-

theoretical generalization of the Painlevé equation (52)

or (53) we replace the linear system (3) defined on Σ by

the four-dimensional linear system over Σ× Σ̃, where Σ̃

is C∗ parameterized by x, or a non-commutative torus.

The first case corresponds to the equations of type (5).

In particular, for field generalization of the Painlevé

equation the constants ν
′ in (53) become independent

fields Sα
b (x) and the inverse inertia tensor J now is some

pseudo-differential operator. Though the field theory is

non-local, the non-locality is similar to the non-locality

of the hydrodynamic of the ideal fluid in terms of vortic-

ity. In fact, it is non-autonomous version of the hydrody-

namic, where the Laplace operator is replaced by some

pseudo-differential operator. If the initial value problem

for this system depends on the zero modes only, then

the equation coincides with the Painlevé equation (52).

In the second case in general situation we also come

to non-local equations, but some degenerate cases lead

to local equations. For example, in the quasi-classical

limit of the non-commutative torus and the rational de-

generation of Σ we obtain the third order equation in

the 2+1 space (τ, x1, x2), depending on two parameters

ǫ1, ǫ2

∂τ ∂̄
2
ZF(x, τ)−{∂̄2ZF(x, τ),F(x, τ)}+ǫ2∂x2

∂̄ZF(x, τ) = 0,

where

∂̄Z =
1

2πi
(ǫ1∂x1

+ ǫ2τ∂x2
),

{f, g} = ∂x1
f∂x2

g − ∂x2
f∂x1

g.

Again, for the zero modes in this equation is a special

degeneration of the Painlevé equation.
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