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1. Zero curvature equations. We consider inte-
grable equations in classical and quantum Hamiltonian
mechanics. In classical mechanics they are described
usually by the Lax equations

oL =L, M]. (1)

Here L and M are matrices (operators), depending on
the phase variables u = (u1,...,upn), v = (v1,...,0p), S
and additional (spectral) parameter z, L = L(u, v, S; z),
M = M(u,v,S;z). We assume that z € ¥ where ¥
is a torus or its degenerations. The variables u,v are
the canonical Darboux variable {v;, u;} = ;5. The Lax
equations can be derived from the d = 4 (super) Yang—
Mills theories with the gauge group G compactified on
Y. In this case L is identified with a scalar field taking
values in the adjoint representations (the Higgs field)
restricted on X, while M is an element of the Lie alge-
bra of the gauge transformations. The variables S are
elements of the Lie algebra Lie(G). They Poisson com-
mute with (u,v) and their brackets are the Poisson—Lie
brackets on Lie(G). In terms of the Lax operators the
Poisson brackets are defined by means of the classical
r-matrices (see examples below).
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Eq. (1) describes an autonomous Hamiltonian in-
tegrable mechanics. To come to the non-autonomous
Hamiltonian system we replace (1) by

&L — k0, M = [L, M], 2)

where « is a parameter. This equation is the monodromy
preserving condition for the linear equation

(k0. + L) =0, 3)

and L now plays the role of connection. In particular,
(2) describes the Painlevé equation, Schlesinger system
and their generalizations. In the limit k — 0 we come
to (1).

Another generalizations of (1) are the Zakharov—
Shabat equations for 141 integrable field theories which
possess the soliton type solutions:

0L — k0, M = [L, M). (4)

One can also consider a generalization of (4) and (2)
given by

0L — kDM — kd, M = L, M). (5)

We refer to the models described by this equation as the
Painlevé field theories.
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The zero curvature equations (1)-(4) keep their
forms under the gauge transformations

D+L— D+gLg '~ (Dg)g™1,

6
O +M— 0 +gMg~" — (drg9)g™ ", ©

where the differential operator D is given by
D=0, A=kd,, D=k0;, D=k0,+r0, (7)

for the Eq. (1), (2), (4), (5) respectively.

The purpose of the paper is to show that all types of
zero-curvature equations can be described in a similar
way, i.e. there exist a universal type Lax pairs which can
be used for all the cases. They describe a wide class of
integrable systems and related problems. We start from
the classical integrable mechanics, which deals with two
types of models — many-body systems (interacting parti-
cles) and integrable cases of motion of solid body in mul-
tidimensional space. First, we demonstrate that many-
body systems of Calogero—Ruijsenaars type can be for-
mulated as integrable tops of Euler—Arnold type. Using
special gauge transformation the Ruijsenaars—Schneider
model is represented in the form

L(Z,S, 7]) :trQ[R7172(Z)52]’ (8)

where the relativistic deformation parameter n enters
the Lax matrix as the Planck constant of a certain quan-
tum R-matrix. Being formulated as tops the many-body
systems are then naturally included into a more gen-
eral class of integrable models, which consists of spin
chains and Gaudin models. The top-like description also
makes it easy to pass to 1+1 integrable equations in-
cluding one-dimensional Landau-Lifshitz type magnet-
ics, principal chiral models and their generalizations.
At the same time the Gaudin models can be consid-
ered as autonomous version of the Schlesinger systems
— the monodromy preserving equations which can be
reduced to Painlevé equations. Finally, we come to the
quantum version of the Schlesinger models described
by the Knizhnik—Zamolodchikov—Bernard (KZB) equa-
tions well-known in studies of conformal field theories.
The consistency condition for the KZB connections is
guarantied by identities for the initial R-matrix enter-
ing (8). In the end we briefly discuss that the equations
of Painlevé—Schlesinger type can be generalized to the
so-called Painlevé field theories.

2. Calogero-Moser model as integrable top.
Let us start with the most simple example (more com-
plicated and general cases can be found in [1-3]) — 2-
body Calogero—Moser model. The Hamiltonian is given
as

2

cM 1, v 1 vy2 1 v
H = — —_— = — _ - -
2" TV 2(” 2u) 20z @

in the canonical coordinates {v,u} = 1. Its Lax matrix

v +1/ v v
U — — 4+ = Z 4z
M 2u 2z 2u  z
L="(2) (10)
A
2u 2z 2 z

511 — 22512 512

So1 — 2%(S11 — S22) — 24812 Saa + 22512
(11)

The residue matrix is given by the following change of
variables:

Lo v
S:<511 512>: 2 2u
1 1
Sa1 52 5(vu‘°’—21/u2) —Evu—i—l/
(12)

i.e. the canonical variables v, u are transformed into the
generators of the Lie algebra gly with the Poisson-Lie
brackets:

{Sij;s Sk1} = 0:Skj — ks Su- (13)

The Hamiltonian (9) acquires the form

1
H = —512(511 — SQQ) = 5 tr [SJ(S)] R

(14)
o ()

S11 — S22
of the integrable (rational) top of Euler—Arnold type
with the inverse inertia tensor J(S). Equations of mo-
tion

S ={H, S} =S, J(9)], (15)

can be written in the Lax form (1) with the Lax matrix
(11) and the M-matrix

S12 , 0. (16)
S11 — Sag 4+ 222512 —S12

The top form of the Calogero—-Moser model allows us
to relate to it the non-dynamical r-matrix. Indeed, the
classical r-matrix provides the Poisson brackets between
matrix elements of the Lax matrix in the form:

Z Ei; @ By {Lij(2), L(w)} ==
i,7,k,1

= {L1(2), La(w)} = [L1(2) + La(w), r12(z — w)], (17)

M(z,8)=— (
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Li1 1242

where for glo: L1 = L® 1 =
< L1122

L1 1242
Lo loxs )

L 0
2x2 ) In our example the

Ly =1 L =
O2x2 L

classical r-matrix equals

1/z 0 0 0
-z 0 1/z 0

ri2(z) = 18
12(2) o1 0 (18)
-z 2 z 1/z

It satisfies the classical Yang—Baxter equation

[r2(z = w), r13(2)] + [r12(2 — w), res(w)] +
+ [r13(2), r23(w)] = 0 (19)

and is simply related to the Lax matrix:

L(z) = tra [r12(2)S2] . (20)

3. Relativistic models and quantum R-
matrices. As it was shown in [3] the construction of
the top model can be generalized to the relativistic
deformation of integrable systems. The simplest exam-
ple here is the rational 2-body Ruijsenaars—Schneider
model. It is described by the Hamiltonian

HRS — 2u2u nev/c + 21"21_ nefv/c’ (21)
where 7 is the coupling constant and c is the light speed.
As in the previous case the Ruijsenaars—Schneider
model can be rewritten in the form of the (relativistic)
top. The Lax matrix has the following form

tr(S)

1
L"(z,S) = ;32x2+ loxa — (2 +m) x
S 0
. v (22)
(S11 —S22) + (n* + 22 +12)S12 —S12
with the change of variables

Sll(U,u) = _g (ev/c _ e—v/c) ,

1
— % (ev/c _ e—v/c) ,

Sar(v,u) = =5 [ —m)? — e/ (u+)?]

812 (1}, u)

1
Saalv,u) = o [/ (u—n)* = ™ (u+n)?]

(23)
and equation of motion
$=18,07(S)], J(S) = % lows —
. ) nS12 0 (24)
n°Si2 +n(S11 — S22) —nSi2
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generated by the Lax equations (1) with (22) and
M(z,8) = —L(#,S) (i.e. the M-matrix here is of the
same form as the L-matrix (11) in the non-relativistic
case up to the sign).

The Poisson brackets are defined by the quadratic
r-matrix structure

{Li(2), Ly(w)} = [L](2) Lg(w),ra2(z —w)],  (25)

with the rational r-matrix (18). The quadratic Poisson
brackets for the matrix elements of S is the classical
Sklyanin algebra:

{S1,82} = [J"(8)1 Sz, Pral. (26)

The most important statement here is the following:
while the non-relativistic top is described by the clas-
sical r-matrix (20) the relativistic top is related in the
same way to the quantum R-matrix:

N
L(z,8) = Z Riz,kl('z) Eij S = trz [R15(2)S2]
3,4,k l=1
(27)
where the relativistic deformation parameter 7 plays the
role of the Planck constant. That is to say that R},(z)
satisfies the quantum Yang—Baxter equation:

R7172(Z - w)R?g(Z - y)Rgg(w —y) =
= R5(w — y) R (2 — w)Ri3(z — y). (28)

With a knowledge of the Lax matrix we know the quan-
tum R-matrix as well. For the case (22) we have:

RMz) =
Rt 427t 0 0 0
—h—z ht 271 0
—h—z 271 ht 0
R —22h% —2h2%2 — 2% h4+2z h4+z R4zt
(29)

The classical limit
Rly(2) = M1 @14 r2(2) + hmiz + O(F?)  (30)

provides the classical Yang-Baxter equation (19) from
the quantum one (28) and corresponds to the non-
relativistic limit at the level of mechanical systems:

n:=vfc, ¢c—0o0: HRS =

2 1
=t trS(v,u) =2+C—2HCM+0(C—2> (31)

and S(v,u) = —% lim ¢S(v,u).
c—00
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4. Spin chains and Gaudin models. After inte-
grable many-body systems are included into the class
of integrable tops we can proceed to more complicated
models. Having the quadratic Poisson structure (25) the
classical periodic spin chain with n sites is naturally de-
fined via the monodromy matrix

T(2,8,.,8") =T(2) = L"(2—2,8") ... L"(z—2,,, S™),

(32)
where zj are the inhomogeneities parameters. In view
of (27) it takes the form:

To(z) = tr1..n [Rgl(z —21) Ry (2 — 20) (SH)1 ... (S”)n] ,

(33)
where the index “0” corresponds to the common ma-
trix space (auxiliary space) of Lax matrices L"(S™). We
drop it in formulae below. In the non-relativistic limit
7 — 0 the monodromy matrix (33) gives rise to the Lax
operator of the Gaudin model:

L8(z) = 3" trafroa(z — z)8% 2 3 Lz — 24, 5%,
a=1 a=1

(34)
The Poisson structures for both — spin chains (32)
and Gaudin models (34), (33) are direct sums oven
a = 1,...,n of 1-site Poisson structures (26), and (13)
respectively. For example, the Poisson structure for the
Gaudin model is

{Silv Sg} =g [ng Pl?]' (35)

The Hamiltonians appear by evaluating

a2 e tr(89)? hq
St [LE(2)]” = 5 ; CEn i + 2hg. (36)

The direct computation gives

ha = — Z tI‘12 [Tlg(za — z()Sng] s
c#a

n

1
ho=5 D tr[S"M(z - 2, 5],

b,c=1

where M(z, S) is the M-operator (16). The Hamiltoni-
ans (37) generate equations of motion

(37)

01, 8% = =[S L(24 — 2,5%)], b#a=1,..,n,

n

0,8 = [8% L(ze — 2, 5%), a=1,..,n

c#a
(38)

and

0o S* =[S, J(SM)] + Y [9%, M(20 — 2, 5°)]. (39)
c#a

Eqgs. (38) and (39) have the Lax form
01, L% (2) = [LC(2), M$], d=0,1,...,n (40)

with MS(2) = —L(z — 24,599, a =
MG (2) = S M(z — 2, 5¢), M(2, ) is from (16).
c=0

1,...,n, and

5. Soliton equations. For the homogeneous spin
chain (33) (2 = 0) the continuous limit leads to the
141 field theories, which are integrable in the sense of
the classical inverse scattering method. The equations of
motion are defined by the Zakharov—Shabat equations
(4):

U — ko, V =[U, V], (41)

where U and V are gla-valued functions on the circle
(with the coordinate ). They also depend on the spec-
tral parameter and dynamical fields S(z). The mechan-
ical (0+1) models described by non-dynamical r-matrix
can be generalized to 141 field theory (41) straightfor-
wardly: one should simply use the same Lax operator as
for the top model:

UMz, S(x)] = L[z, S(x)] = trafria(2)Sa(z)].  (42)

It leads to Landau-Lifshitz type equation (the com-
ponents of S(x) in the Pauli matrices basis S(z) =
= Z? 045q(x) can be considered as components of the
magnetization vector in one dimensional ferromagnetic):

S = alS, Sza] + 5, J(9)], (43)

where S, = 929, J(S) is the same as in the top case
and o = \?/(8k?) is a constant (S? = \21, 9.\ = 0).
The equations of motion (43) with J(S) (14) are of the
form:

01S11 = 81202521 — aS9102S12 — 2512511,
0¢S21 = 20452183511 — 20[51185521 — 28512521 + 45121,

0:S12 = 204511(92512 — 2a51233511 + 25122
(44)
are described by the Hamiltonian

HUL = % 7{ do {tr(S2) + tr[SJ(S)]}  (45)

and are presented in the form (41). The matrix V is
obtained as follows:

yLL — —[z7'L(2,8) — 2M(2,S) + L(z,h)]/2, (46)

where L and M are from (11), (16) and matrix h is
equal to h = —&[S, Sz], Sz = 025.
ITucema B 2KOT®  Tom 101
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Similarly to the Gaudin model, we can construct the
1+1 theory corresponding to U(z) with two poles:

Uchiral [Z, Sl (Z‘), 52 (Z‘)]

(47)
It is the principal chiral model. Equations of motion are
of the form:

8,S' — k9, St = —2[S', L(z1 — 22, 5%)],

L(Zl — Z2, Sl)]

(48)
0,S? + kD, S? = —2[S2,

6. Painlevé—Calogero correspondence. The six
Painlevé equations were discovered in the 1900-1910 pe-
riod as the second order differential equations that have
only poles in the complex plane as movable singularities.
The most general equation — the Painlevé VI (PVI) has
the following form:

EX 111 dX\*
dt2 X X -1 X — dt
(1, ﬁ+X(X—1)(X—t)
t -1 X—t) dt 2t — 1)2
t—1 tt—1)
(X—l)?”(X—t)?)’

where (a, 8,7, 0) are arbitrary complex constants. The
PVI can be represented in the elliptic form

x(a—f—ﬁ%—i—v (49)

E Va@ U+wa ((4)0,(4)1,(4)2,(4)3) =

d7'2
1 74+1 7
=(0,-, =T 50
(0.5 5+3) (50)
via the change of variables X = pé:)_;fl, A —
with e = p(wr) and identification of constants

(B, v v, v2) = ﬁ(a,—ﬁ,’y,% — ). Here p(z) is
the Weierstrass p-function on the elliptic curve ¥, =
C/(Z+7Z), ImT > 0. Eq.(50) is described as the
Hamiltonian system with the Hamiltonian function H =
10?2 — Zi o V2p(u+w,) and canonical Poisson bracket
{v,u} = 1. The system is non-autonomous since the po-
tential explicitly depends on the moduli 7 (of ¥ ) which
is the “time” variable. It is non-autonomous version of
the BC; Calogero-Inozemtsev system. In the case when
Vg = %1/ for all @ we come to the elliptic two-particle
non-autonomous Calogero—Moser model
d*u

2
—— = v (2u).

dr (51)

Similarly to the rational case the model (50) has 2 x 2
Lax pair [4] and can be formulated in the form of in-
tegrable top [5]. It is the non-autonomous version of
Bem. 9-10 2015
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= L[z—z1, S*(2)|4L[z— 29, S*(x)].

the Zhukovsky—Volterra gyrostat. Namely, it was shown
in [5] that (50) can be written as dynamics of three-
dimensional complex-valued vector S = (57, S2, S3):

0;S=SxJ(S)+Sxv, (52)

where J(S) = (J1S1,J252,J353), Jk = @(wk), and
v = (vy, v}, ) — vector of linear combinations of con-
stants v, from (50) multiplied by some ratios of theta-

constants. The fourth independent linear combination
3
of the constants v} = % v, appears to be the length
c=

0
3
of S: Y2 = 3" S2. Eq. (52) can be also written in terms
a=1
3
of S1(2,C)-valued matrix S = Y 0,5, where o, are
=1

the Pauli matrices, as

8,8 =[S, J(S)] + [S, /], (53)

3

where v/ = 37 o,v.. It is generated by the quadratic
=1

Hamiltonian

H= %tr S J(S)] + tx(S ), (54)
and the linear Poisson-Lie brackets on sl*(2,C):
{84,893} = ¢€apyS,. Explicit change of variables
Sa(v,u) and other details can be found in [5-7].
Eq. (53) is reduced to the non-autonomous elliptic
sla-top when 1] 5 5 = 0. This case corresponds to (51).

The (classical) Painlevé-Calogero correspondence
was suggested in [8]. It claims that the (Krichever’s) Lax
pair of the elliptic Calogero—Moser model can be also
used for the monodromy preserving equations, which
describe the higher rank Painlevé equations in the ellip-
tic form.

The Painlevé—Calogero correspondence can be for-
mulated as the following property of the quantum non-
dynamical R-matrix:

- RM(2) = 0.0, R"(2). (55)

Here we imply explicit dependence R = R(7). For
the elliptic case the quantum R-matrix is the Baxter—
Belavin’s one. Plugging the expansion (30) of the clas-
sical limit into (55) we get a set of relations. The first
non-trivial is

0r17(2)

where 17,(2) = r12(z, 7) is the classical r-matrix. From
(56) it follows that

= 0.miy(2), (56)

8,L7(2,8) = .M (z,5), (57)
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where L7(z,5) = L(z,S,7), M"(2,S) = M(z,S,7),
and the derivative is taken with respect to explicit de-
pendence on 7. Therefore, we can consider the mon-
odromy preserving equations in time 7

d,L7(2,8) — .M (z,S) =
= [L7(2,5),M"(2,8)], S=5(r) (58)

(d; = d/dr) as the non-autonomous version of the inte-
grable top’s equations of motion:

8,5 =[S, J7(S)]. (59)

Indeed, the total derivative d,L7(z,S) contains both —
the partial derivatives by explicit and implicit depen-
dence on T:

d.L7[z,S(7)] = drtra[ris(2)Sa] =
tra{ [0 T2(2)] 82 } + tra 1o (2) (9:2)] . (60)

The first term is cancelled by 9, M7 (z,S) (57), and we
get (59).

Similarly, the Schlesinger system as the non-
autonomous Gaudin model [9]. The monodromy
preserving equations

0., L% (2) = 0.M%“(2) = [L9(2), MS*(2)]  (61)
and
0rLE(2) — 0. ME0() = [L6(2), ME0(2)]  (62)

generate dynamics in time variables z, and 7. They are
equivalent to non-autonomous versions of the Gaudin’s
equations of motion (38), (39):

0,,8° = —[S®, L7 (24 — 2, 5%)], b # a,

0.,5" =Y [9% L7 (2¢ — 24, 5°)]
c#a

for a,b=1,...,n and

0,5 =[S J7(S")] + Y [9% M7 (20 — 2, 5°)]. (64)
c#a

The Hamiltonians and the Poisson structure of the
Schlesinger system are the same as for the Gaudin
model. Description of the elliptic Schlesinger system can
be found in [9].

7. Quantum Painlevé-Calogero correspon-
dence. The classical Painlevé-Calogero correspondence
(55)—(57) can be generalized to the quantum one in the
following sense (see [10]). The monodromy preserving

equation (2) is the compatibility condition of the linear
(isomonodromy) problem:

0,9 = —L(z,t)®, <%>
U= .
0, = —M(z, 1), P2

(65)

The main statement is that for all (2 x 2 linear problems)
Painlevé equations there exists a choice of coordinates
z,t and gauge fixation (6) such the linear problem (65)
is reduced to the scalar equation on 1

O = % 83 + % det L(Z) — % 82L11(z) + Mll(Z):| 1,
(66)
and (66) describes the non-stationary Schrédinger equa-
tion for the potential of the classical mechanical model
— the classical Painlevé equation coming from (2). The
quantum potential may differ from the classical by only
“quantum shift” of the constants.
Let us give the example of the truncated P equa-
tion:
i = 2v%e! sinh(2u). (67)

The linear problem was found in [11]:

1 2vet/? sinh(z — u)

L(z,t) = ,

2vet/? sinh(z + u) —U

(68)
0 vet/? cosh(z — u)

M(z,t) = .

vet/? cosh(z + u) 0
(69)

Then, we have the following quantization of (67):

Oy = |:HHI(82, z) — Hip(u, u)} Y,
(70)
Hii(0,2) = % 02 — v2e’ cosh(22).

8. Knizhnik—Zamolodchikov—Bernard equa-
tions. The KZB equation can be defined as quantiza-
tion of the linear problem (65) for the Schlesinger system

(61)—(64): .
{ Vath =0, )
V‘rd} =0,
where

Va - 82(1 + Zrac(za - ZC)7
c#a

1 (72)
V,=0; + 5 ;mbc(zb — 2c)

with r and m are from (56). The compatibility con-
dition of (71) requires classical Yang—Baxter equation
(19), heat equation (55), and

ITucema B 2KQT® Tom 101 Bem. 9-10 2015
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[rab; mab] = 07 (73)
[raba Mge + mbc] + [racy Mep + mbc] =0. (74)

It appears [12] that these identities can be proved in
the general form using the quantum Yang-Baxter equa-
tion (28) and another one:

RYy Ry RY, + RY3 RE, RY, = —N?¢/(h) 1@1®1, (75)

where R, = Rl (2, — z).

Therefore, we get the quantization of the Schlesinger
system as consequence of the underlying quantum R-
matrix properties. The quantum R-matrix structure un-
derlies classical integrable systems including their rela-
tivistic extensions and Painlevé-Schlesinger equations as
well.

9. Painlevé field theory. To construct field-
theoretical generalization of the Painlevé equation (52)
or (53) we replace the linear system (3) defined on ¥ by
the four-dimensional linear system over ¥ x X, where X
is C* parameterized by x, or a non-commutative torus.
The first case corresponds to the equations of type (5).
In particular, for field generalization of the Painlevé
equation the constants v’ in (53) become independent
fields S§*(x) and the inverse inertia tensor J now is some
pseudo-differential operator. Though the field theory is
non-local, the non-locality is similar to the non-locality
of the hydrodynamic of the ideal fluid in terms of vortic-
ity. In fact, it is non-autonomous version of the hydrody-
namic, where the Laplace operator is replaced by some
pseudo-differential operator. If the initial value problem
for this system depends on the zero modes only, then
the equation coincides with the Painlevé equation (52).

In the second case in general situation we also come
to non-local equations, but some degenerate cases lead
to local equations. For example, in the quasi-classical
limit of the non-commutative torus and the rational de-
generation of ¥ we obtain the third order equation in
the 2-+1 space (7,21, 22), depending on two parameters
€1, €2

875%F(x, ’7')—{5%]?(%, 7),F(2,7)}+€20,,07F(z,7) = 0,

where

ITucema B 2KQTD® Tom 101 BeRm. 9-10 2015

= 1
8Z = %(618931 + 627'83:2),

{f’g} = 8m1f8m2g - 8m2f8m19-

Again, for the zero modes in this equation is a special
degeneration of the Painlevé equation.

The work was partially supported by RFBR grant
15-02-04175, by joint RFBR grant 15-51-52031 HHC,
(G.A. and A.Z.), and D. Zimin’s fund “Dynasty” (G.A.
and A.Z.). The work of A.L. was partially supported
by AG Laboratory GU-HSE, RF government grant, ag.
11 11.G34.31.0023, and by the Simons Foundation. The
work of A.Z. was partially supported by the Program
of RAS “Nonlinear Dynamics” and by the Ministry of
Education and Science of Russian Federation under the
contract 8528.

1. A. Levin, M. Olshanetsky, and A. Zotov, Commun.
Math. Phys. 236, 93 (2003).

2. G. Aminov, S. Arthamonov, A. Smirnov, and A. Zotov,
J. Phys. A: Math. Theor. 47, 305207 (2014).

3. A. Levin, M. Olshanetsky, and A. Zotov, JHEP 07,
012 (2014); arXiv:1405.7523 [hep-th]|; A. Levin, M. Ol-
shanetsky, and A. Zotov, Nuclear Phys. B 887, 400
(2014); arXiv:1406.2995 [math-ph)].

4. A. Zotov, Lett. Math. Phys. 67, 153 (2004); arXiv:hep-
th/0310260.

5. A. Levin, M. Olshanetsky, and A. Zotov, Comm. Math.
Phys. 268, 67 (2006).

6. A. Smirnov and A. Zotov, Theor. Math. Phys. 177(1),
1281 (2013).

7. A. Levin, M. Olshanetsky, and A. Zotov, Russ. Math.
Surv. 69(1), 35 (2014); arXiv:1311.4498[math-ph].

8. A. Levin and M. Olshanetsky, CRM Ser. Math. Phys.,
313 (2000); arXiv:alg-geom/9706010.

9. Yu. Chernyakov, A. Levin, M. Olshanetsky, and A. Zo-
tov, J. Phys. A: Math. Gen. 39, 12083 (2006).

10. A. Zabrodin and A. Zotov, arXiv:1212.5813 [math-ph];
A. Zabrodin and A. Zotov, J. Math. Phys. 53, 073507
(2012); J. Math. Phys. 53, 073508 (2012).

11. G. Aminov and S. Arthamonov, arXiv:1112.4688
[nlin.ST].

12. A. Levin, M. Olshanetsky, and A. Zotov, JHEP 10,
109 (2014); arXiv:1408.6246 [hep-th]; A. Levin, M. Ol-
shanetsky, and A. Zotov, arXiv:1501.07351 [math-ph].



