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We study the process of neutrino decay to electron and W -boson in the external magnetic field using the

semiclassical “worldline instanton” approach. Being interested only in the leading exponential factor, we make

calculations in a toy model, treating all particles as scalars. This calculation determines the effective threshold

energy of the reaction as a function of the magnetic field. Possible astrophysical applications are discussed.

It is emphasized that the method is general and is applicable to a decay of an arbitrary neutral particle into

charged ones in the external electromagnetic field.
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Introduction. Recent detection of very high energy

(up to 1015 eV) neutrinos in the IceCube experiment

[1, 2] can open a new branch of astrophysics – very high

energy neutrino astronomy. Although the angular reso-

lution of neutrino detectors is rather low, it will signif-

icantly improve in the near future, and may reach the

level sufficient for identification of neutrino sources.

One class of potential neutrino sources are pulsars

and magnetars. These objects generically have a super-

strong magnetic field around them in a radius of several

kilometres. This raise a question: Can neutrinos escape

the region of strong magnetic field if they are produced

inside it? Neutrino dispersion relation in the external

magnetic field is modified [3], so its decay, forbidden

in the absence of the field, becomes allowed. The main

decay channels are ν → νe+e− and ν → e−W+.

These processes have been studied in many works

[4–10] (see also the book [11]). The dependence of their

widths on the magnetic field and neutrino energy ex-

hibits the following common feature. At small fields or

energies they are exponentially suppressed while when

the energy or magnetic field exceed certain values the

suppression disappears. In other words, the above reac-

tions proceeds effectively only above a certain threshold

energy, which depends on the value of the magnetic field.

The reaction

ν → e−W+, (1)

being of the first order in the weak coupling constant,

gives the leading contribution to the neutrino decay

width once the energy exceeds the threshold.

1)e-mail: satunin@ms2.inr.ac.ru

It was analysed for subcritical magnetic fields2) in

[4–6] and for supercritical fields in [7]. The reaction

(1) reduces the neutrino mean free path to the values

shorter than the astrophysically relevant distances just

after it leaves the regime of exponential suppression [5].

This will produce a cutoff in the spectrum of neutrino

sources if the latter possess strong magnetic fields in the

region of neutrino emission.

We study the process (1) using the semiclassical

“worldline instanton” method. This method is techni-

cally much simpler than the standard approach [4–7],

based on the exact expressions for electron and W -boson

wave functions (or propagators) in the magnetic field,

and provides an independent verification of the results

existing in the literature.

Worldline path integral approach [12] is a powerful

tool to study non-perturbative phenomena in quantum

field theory, such as particle production in a classical ex-

ternal field. The well-known example is the Schwinger

effect [13] – creation of electron-positron pairs from vac-

uum in a constant electric field. Affleck et al. showed

[14] that the rate of the process can be expressed as

the quantum mechanical partition function of an aux-

iliary system describing periodic motion of a charged

particle in the external field, analytically continued to

Euclidean time domain. The corresponding path inte-

gral can be evaluated in the saddle point approxima-

tion. The method was generalized to pair production

in time-dependent and space-dependent electric fields

[15], including the case of pair production induced by

2)The critical, or Schwinger, magnetic field is obtained as

Hcr ≡ m2
e
/e ≃ 4 · 1013 G, where me and e are the electron

mass and charge.
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a photon in the initial state [16]. In [17] this approach

was used to study decay of photon to e+e− pair in the

magnetic field.

It was shown [14, 15], that the exponential part of

the rate of such Schwinger-like processes does not de-

pend on the spin of charged particles (spin dependence

appears only in the pre-exponential factor). So, for sim-

plicity we will consider in our work all particles partici-

pating in the process as scalars.

The width of neutrino decay. We consider neu-

trino decay to an electron and W+-boson in the exter-

nal magnetic field. We are interested only in the main

exponential behaviour of the result, which should be in-

dependent of particle spins. Instead of the electroweak

theory for simplicity we consider a toy model with scalar

particles. The Lagrangian of the model is

L = Dµφ
∗Dµφ−m2

eφ
∗φ+

+Dµχ
∗Dµχ−m2

Wχ∗χ+

+
1

2
(∂µξ)

2 − 1

4
FµνF

µν + gξφ∗χ+ h.c. (2)

Here ξ is a real massless scalar field, representing “neu-

trino”, φ and χ are scalar “electron” and “W -boson”; me

and mW denote their masses. Interaction term includes

constant g of a mass dimension. Fields φ and χ inter-

act with a gauge field Aµ, which has the standard ki-

netic term. Covariant derivative Dµ is defined as usual,

Dµφ = (∂µ − ieAµ)φ.

In terms of our toy model we consider the process

of a ξ particle (neutrino) decay to a pair of φ parti-

cle and χ antiparticle (scalar electron and W -boson, re-

spectively). Neutrino with four-momentum kµ = (ω,k)

propagates orthogonally to the uniform magnetic field

H. We choose the coordinate system where the magnetic

field is directed along the x-axis, neutrino momentum –

along the y-axis, so k = (0, ω, 0). The reaction is kine-

matically allowed if ω > mW + me, we study it well

above the threshold, ω ≫ mW + me. Let us mention

that all subsequent formulas are valid if the electron is

replaced by muon or tau-lepton.

Following the optical theorem, the width of ξ can be

obtained from the imaginary part of its self-energy:

Γ =
1

2ω
ImΣ(k), (3)

where Σ(k) is the Fourier transform of the correlator:

Σ(y−z) = 〈χ∗(y)φ(y)φ∗(z)χ(z)〉+〈φ∗(y)χ(y)χ∗(z)φ(z)〉.
(4)

The first term in Eq. (4) corresponds to creation of a φ

particle and χ antiparticle; the second term – to creation

of a χ particle and φ antiparticle. We will concentrate

only on the first term for two reasons. First, in the model

(2) the exponential parts of both terms are equal, so for

simplicity we can restrict to one of them. Second, in the

realistic case of the Standard Model neutrino self-energy

does not contain an analogy of the second term due to

the lepton charge conservation.

The two-point Green function can be represented as

(see [18]):

〈φ∗(z)φ(y)〉 =
∫ ∞

0

dT1〈y|e−T(D2
µ+m2

e)|z〉 =

=

∫ ∞

0

dT1

(2πT1)2
e−m2

eT1
1

N

∫ xµ(T1)=zµ

xµ(0)=yµ

Dxe−
∫ T1
0 LQMdτ , (5)

where

LQM =
ẋ2
µ

4
− ieAµẋµ, (6)

and N =
∫ xµ(T )=yµ

xµ(0)=zµ
Dxe−

∫
T

0

ẋ2
µ
4 dτ is a normalization

factor. Summation over repeated Greek indices with Eu-

clidean signature is understood. The notation ẋµ de-

notes derivative over τ . The formula similar to (5) is

valid for the 〈χ∗(y)χ(z)〉 correlator. Substituting both

correlators into the self-energy (4) we introduce inte-

grals over xµ(0) and xµ(T1) and corresponding delta-

functions, fixing the boundary conditions at the points

τ = 0, τ = T1. Thus, we obtain a single path integral

with periodical boundary conditions:

Σ(y − z) ∝

∝
∫ ∞

0

dT1

T 2
1

∫ ∞

0

dT2

T 2
2

∫

p.b.c

Dxµδ
(4)[xµ(0)− zµ]×

× δ(4)[xµ(T1)− yµ]e
−m2

eT1−m2
WT2−

∫ T1+T2
0 LQMdτ . (7)

The notation p.b.c means periodical boundary condi-

tions xµ(τ) = xµ(τ + T1 + T2). Setting yµ + zµ = 0

without loss of generality and making the Fourier trans-

formation of (7), we obtain3):

Γ∝ Im

∫ ∞

0

dT1

T 2
1

∫ ∞

0

dT2

T 2
2

∫

p.b.c

Dxµδ
(4)[xµ(0) + xµ(T1)]×

× e−m2
eT1−m2

W T2−
∫ T1+T2
0 LQMdτ+ikE

µ [xµ(T1)−xµ(0)]. (8)

Here we introduce the euclidean neutrino momentum

kEµ = (iω,k). We break the integral in the exponent of

(8) into two parts: the first part is defined at the seg-

ment τ ∈ [0, T1], in the second part τ ∈ [T1, T1+T2]. For

convenience we make a change of variables: in the first

3)In calculations it is convenient to consider delta functions in

the integral representation.
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integral we set τ ′ = 1
2T1

τ , in the second – τ ′ = 1
2T2

τ .

The (minus) exponent of (8) becomes

S[xµ] = m2
eT1 +

∫ 1/2

0

ẋ2
µ

8T1
dτ − ie

∫ 1/2

0

Aµẋµdτ +

+m2
WT2 +

∫ 1

1/2

ẋ2
µ

8T2
dτ − ie

∫ 1

1/2

Aµẋµdτ −

− ikEµ [xµ(1/2)− xµ(0)] . (9)

Thus, the paths describing electron and W -boson

correspond to τ ∈ [0, 1/2] and [1/2, 1] respectively. The

expression (9) has the form of a sum of two Euclidean

actions of two relativistic particles with different masses

in the external electromagnetic field. Two sources of op-

posite signs located at the proper times 0 and 1/2, are

added into the action. The strength of the sources de-

pends on the neutrino momentum.

We expect that the integrals on the r.h.s. of (8) can

be evaluated in the saddle point approximation. The

saddle point equations for xµ(τ) give the classical tra-

jectories (in general complex), which should be substi-

tuted into the action (9). If the action (9) on the solution

is parametrically large, the width of the process is sup-

pressed by the exponent of the action (with the minus

sign). For further calculations it is convenient to choose

the gauge Aµ = − 1
2Fµνxν . Varying the action (9) over

xµ, we obtain the equations for different regions of pa-

rameter τ (we denote the solutions in the two regions

x
(1)
µ and x

(2)
µ );

ẍ
(1)
µ

4T1
= ieFµν ẋ

(1)
ν , 0 < τ < 1/2, (10)

ẍ
(2)
µ

4T2
= ieFµν ẋ

(2)
ν , 1/2 < τ < 1, (11)

and boundary conditions at the points 0 and 1/2:

ẋ
(1)
µ (1/2)

T1
− ẋ

(2)
µ (1/2)

T2
= 4ikEµ , (12)

ẋ
(2)
µ (1)

T2
− ẋ

(1)
µ (0)

T1
= −4ikEµ . (13)

We are looking for a solution of Eqs. (10)–(13) that

describes a closed trajectory in four-dimensional com-

plex spacetime – “worldline instanton”. The solution is

composed of two different hyperbolic arcs, defined on

the segments τ ∈ (0, 1/2) and τ ∈ (1/2, 1), respectively:

x
(1)
0 = A0

(

τ − 1

4

)

,

x
(1)
2 = iA(1)sh

[

4θ1

(

τ − 1

4

)]

,

x
(1)
3 = A(1)

{

ch

[

4θ1

(

τ − 1

4

)]

− chθ1

}

,

(14)

and

x
(2)
0 = −A0

(

τ − 3

4

)

,

x
(2)
2 = −iA(2)sh

[

4θ2

(

τ − 3

4

)]

,

x
(2)
3 = −A(2)

{

ch

[

4θ2

(

τ − 3

4

)]

− chθ2

}

.

(15)

Here, for simplicity, instead of Ti we use dimension-

less parameters θi = TieH . Other parameters are de-

termined in the following way:

A0 =
4ω

eH

θ1θ2
θ1 + θ2

, A(i) =
ω

eH

shθj
sh(θ1 + θ2)

, (16)

here j = 2 if i = 1 and vice versa. This solution is shown

in Fig. 1. Substituting solution (14), (15) into (9), we

Fig. 1. “Worldline instanton”: the classical trajectory de-

scribing neutrino decay. The top (bottom) graph refers to

the case θ1 ≪ 1 (θ1 ≫ 1). The projection of the trajectory

on the plane (ix2, x3) is shown

obtain the action on the classical solution:

S [θ1, θ2] =

=
m2

e

eH
θ1 +

m2
W

eH
θ2 +

ω2

eH

(

− θ1θ2
θ1 + θ2

+
shθ1shθ2

sh(θ1 + θ2)

)

.(17)
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Having performed the path integral we are left with

two ordinary integrals over θ1 and θ2. As the classical

solution is assumed to be large (which will be checked

a posteriori), these integrals can also be evaluated with

the saddle point method. Varying the action (17) over

θ1, θ2 we obtain:

sh2θ2

sh2(θ1 + θ2)
=

θ22
(θ1 + θ2)2

− m2
e

ω2
, (18)

sh2θ1

sh2(θ1 + θ2)
=

θ21
(θ1 + θ2)2

− m2
W

ω2
. (19)

If the masses of final particles are equal, mW = me,

these equations reduce to those studied in [17] in the

context of photon decay into electron-positron pair; in

this case θ1 = θ2. For general values of mW , me it is

impossible to solve Eqs. (18), (19) at arbitrary values of

ω and H analytically. However, if mW ≫ me approx-

imate analytical solution exists in two regimes. First,

suppose θ1 and θ2 are small compared to unity and as-

sume the hierarchy θ2 ≪ θ1 ≪ 1. Expanding the hy-

perbolic functions in (18), (19) to the leading order on

small parameters θ1, θ2/θ1, we obtain:

m2
e

ω2
=

θ22
3

[

1 + O(θ2/θ1) + O(θ21)
]

, (20)

m2
W

ω2
=

2θ1θ2
3

[

1 + O(θ2/θ1) + O(θ21)
]

. (21)

Neglecting subleading terms, we obtain the saddle point

values of θ1 and θ2:

θc1 =

√
3

2

m2
W

meω
, θc2 =

√
3
me

ω
. (22)

The configuration of the instanton in this case is shown

on the left panel of Fig. 1. The auxiliary time τ increases

anticlockwise. The instanton consists of two smooth hy-

perbolic arcs with the left arc being the trajectory of

the W -boson and the right arc – of the electron. Being

continued to Minkowski spacetime, the closed trajectory

transforms to real trajectories of outgoing particles. In

this picture electron, being ultrarelativistic, carries most

of the neutrino energy, in agreement with the standard

consideration [11].

In order to obtain the neutrino width we substitute

the solution (22) to the action4) (17):

S =

√
3mem

2
W

ωeH
. (23)

4)Interestingly, this action is equal to the area enclosed by the

classical trajectory on the (ix2, x3) plane multiplied by eH.

If the action (23) is parametrically large, S ≫ 1, the

neutrino width is proportional to the minus exponent

of the action:

Γ ∝ e−
√

3mem2
W

ωeH . (24)

The pre-exponential factor can be obtained from the

Gaussian integration over the small fluctuations around

the worldline instanton. Such calculation is beyond the

scope of the present work. However, these fluctuations

must contain a single negative mode which renders the

contribution of the worldline instanton into the self-

energy Σ(k) purely imaginary [19] and hence its con-

tribution into the decay width (3) is indeed nonzero.

The formula (24) is valid within the following ap-

proximations: the condition θc1 ≪ 1 gives ω ≫
√
3m2

W

2me

while the semiclassical limit S ≫ 1 requires ω ≪
≪

√
3mem

2
W

eH . These two conditions are simultaneously

fulfilled in a certain region on the (ω,H) plane (see

Fig. 2). Inside this region Eq. (24) coincides with the

Fig. 2. Regimes of the reaction ν → e−W+ at differ-

ent values of neutrino energy ω and magnetic field H .

The solid line denotes the effective threshold of the re-

action: in the region below if the reaction is exponentially

suppressed while above this line the suppression disap-

pears. Dashed and dashed-dotted lines show asymptotic,

described by Eqs. (25) and (31) respectively. Vertical line

at H ∼ 1013.6 G denotes critical value of the magnetic

field. The reaction width is determined by formula (24)

(by formula (30)) in the region A (B)

results of the previous studies [4, 5] (see also [11]).

Note that this region lies entirely in subcritical mag-

netic fields, H ≪ m2
e/e. From the physical viewpoint

the condition S ∼ 1, or

ωH ∼
√
3mem

3
W /e (25)

determines the effective threshold of the reaction (1) in

subcritical magnetic field.
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To address the case of supercritical magnetic fields,

that are believed to exist in magnetars, we must look for

other solutions of Eqs. (18), (19). From (25) we observe

that for larger magnetic fields the regime of exponen-

tial suppression shifts to lower neutrino energies. On

the other hand, decreasing neutrino energy in (22), we

can violate the condition θ1 ≪ 1 still being in the semi-

classical regime. Hence we are led to consider the case

of large θ1:

θ2 ≪ 1 ≪ θ1.

Expanding the hyperbolic functions in (18), (19) to the

leading order in small parameters θ2/θ1, e
−θ1 , we obtain:

m2
e

ω2
=

(

θ2
θ1

)2

[1 + O (θ2/θ1)] + o(e−θ1), (26)

m2
W

ω2
= θ2 + O

(

θ22
)

+ O (θ2/θ1) + o(e−θ1). (27)

Neglecting non-leading terms, we obtain

θc1 =
m2

W

2meω
, θc2 =

m2
W

2ω2
. (28)

Note that though the formula for θ1, up to a numerical

factor, remains the same as in (22), the expression for θ2
changes. Substituting the solution (28) into the action

(17), we obtain5)

S =
m4

W

4ω2eH
. (29)

Unlike the previous case, the right arc of the trajectory

is highly curved and is very close to the lightcone. In

fact, the parameters of the trajectory in the leading or-

der (see Fig. 1, right panel) and the exponent (29) do

not depend on the electron mass. Thus, the case θ1 ≫ 1

corresponds to the limit of massless electron.

In the semiclassical regime S ≫ 1 the decay width

becomes

Γ ∝ e−
m4

W
4ω2eH . (30)

This result is obtained under two approximations: ap-

plicability of the semiclassical expansion requires ω ≪
≪ m2

W

2
√
eH

while the condition θc1 ≫ 1 gives ω ≪ m2
W

2me
.

These conditions are satisfied in a wide region (see

Fig. 2), containing both sub- and supercritical mag-

netic fields. The formula (30) was previously obtained

Ref. [7] by direct calculations in the limit of massless

electron. The calculation relies on the approximation

H ≫ m2
e/e. We have found that the formula (30) is

valid in a larger region of parameters that what was

5)Again, the action is equal to the area enclose by worldline

instanton times eH.

argued in [7]. Note, however, that the additional region

eH ≪ m2
e, ω ≪ m2

W /2me corresponds to large exponen-

tial suppression, so it presents only academic interest.

From the practical viewpoint, the effective threshold of

the neutrino decay in supercritical fields is determined

by

ω ∼ m2
W

2
√
eH

, (31)

in agreement with [7].

In order to compute the effective threshold of neu-

trino decay for magnetic field compatible to the critical

value we solve the system (18), (19) numerically (see

the solid line at the Fig. 2). The behaviour of the ef-

fective threshold agrees with the results of Kuznetsov

et al. [20].

Electron-positron pair production by neutri-

nos. The worldline instanton approach to particle decay

reactions can be applied as well to particle decays with

three particles in the final state, if one of these par-

ticles is neutral. In particular, the rate of the process

ν → νe+e− in the magnetic field (the exponential part)

can be easily calculated using the known rate of photon

decay in magnetic field.

Consider neutrino with energy ω, producing

electron-positron pair in magnetic field H (as usual, for

simplicity we consider neutrino momentum orthogonal

to the field); the remaining neutrino carries energy ω′.

The situation is the same as if a single massless particle

with energy ω − ω′ decayed into electron-positron. The

rate of the latter process was previously obtained by

worldline instanton method [17]. Integrating over ω′,

we obtain

Γ ∝
∫ ω−2me

0

dω′ e
− 8m3

e
3(ω−ω′)eH ∝ e−

8m3
e

3ωeH .

Here we take care only of the leading exponential factor.

This simple estimate is in agreement with the previous

studies [8, 10]. The transition of this reaction from expo-

nentially suppressed regime to non-suppressed one can

again be considered as an effective threshold. However,

at least in the case of subcritical magnetic field this re-

action is relatively weak [9] even in the absence of the

exponential suppression: the neutrino mean free path is

greater than typical length of the strong magnetic field

in astrophysical objects (see Fig. 2 in [5]).

Discussion. We apply the worldline instanton

method to the calculation of the neutrino decay rate into

electron and W -boson in the external magnetic field in

the regime when this rate is exponentially suppressed.

We have obtained analytic expressions for the suppres-

sion exponent in two limiting cases; these expressions

6 Письма в ЖЭТФ том 101 вып. 9 – 10 2015
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smoothly match along the boundary ω ∼ m2
W /me on

the (ω,H) plane.

Our approach provides a technically simple deriva-

tion of the effective threshold energy for the reaction

where the exponential suppression disappears, as a func-

tion of the magnetic field. These estimates must be

taken into account in the analysis of the models for as-

trophysical sources of very high energy neutrinos. For

example, from Fig. 2 we see that neutrinos with ener-

gies higher than 1015 eV cannot escape from the vicinity

of a magnetar with the magnetic field exceeding a few

times 1014 G.

It is straightforward to generalize our approach to

a wide class of processes. It can be applied to the case

of more complicated field configuration, such as crossed

electric and magnetic fields. The latter configuration can

be realized in fast spinning magnetized astrophysical

objects like pulsars or black holes at transient periods

then the electric field is not screened by the surrounding

plasma.

It is worth stressing that in our calculation we never

made use of the precise properties of neutrino, electron

and W -boson – in fact, we substituted them for simplic-

ity by scalar particles with cubic interaction. Therefore,

it will apply almost without changes to a decay of a neu-

tral particle into two charged ones in the magnetic field

in theories beyond the Standard Model. Examples where

this process can be relevant include models with axions

[21], paraphotons [22], particle decays to millicharged

particles [23] etc.

Furthermore, it was shown [17] that the method of

“worldline instantons” can be easily generalized to theo-

ries with violation of Lorentz invariance. The exponen-

tial suppression of the decay is sensitive to kinematics,

so minor deviation of the particle dispersion relations

from the relativistic form can change the decay width

significantly.

As discussed in [24], this will lead to very strong con-

straints on such observation for electrons, positrons and

photons if the decay of ultra-high-energy photons in the

geomagnetic field is observed in future. It is straightfor-

ward to incorporate effects of Lorentz invariance viola-

tion in the calculation of the present paper along the

lines of [17]. However, at the moment one does not ex-

pect to obtain any useful constraints on these effects

from neutrino astrophysics due to large uncertainties in

the neutrino source model.

The author thanks Alexander Kuznetsov, Grig-
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Sibiryakov for helpful discussions. This work was sup-

ported by RSF grant # 14-12-01340. The author thanks
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