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We calculated the correlators of pseudoscalar and vector currents in external strong abelian magnetic field

in SU(3) gluodynamics. From the correlation functions we obtain the ground state energies (masses) of neutral

ρ0-meson and charged π±- and ρ±-mesons. The energy of the ρ0-meson with zero spin projection on the axis

of the field decreases, while the energies with non-zero spins increase with the field value. The mass of charged

π±-mesons increases with the field. We observe the agreement between Landau level picture and behaviour of

charged ρ±-mesons for moderate magnetic fields. There are no evidences in favour of charged vector meson

condensation or tachyonic mode existence at large magnetic fields. The g-factor of ρ± is estimated in the chiral

limit.
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1. Introduction. Researching QCD in the external

electromagnetic field plays the important role in under-

standing the structure of hadrons. Today the strong

magnetic fields of hadronic scale can be created in

terrestrial laboratories like ALICA, RHIC, NICA, and

FAIR. In non-central heavy ion colisions the magnetic

field value in the moment of collision can reach up to

15m2
π ∼ 0.27GeV2 [1]. Such a strong magnetic field can

modify the properties of strongly interacting matter.

Many interesting effects have been observed in exper-

iment and discovered theoretically, for example inverse

magnetic catalysis [2], chiral magnetic effect [3, 4], en-

hancement of the chiral symmetry breaking [5–9].

The investigations related to QCD phase diagram in

strong magnetic field are presented in [10–17]. Numer-

ical simulations in QCD with Nf = 2 and 2 + 1 show

that the strongly interacting matter in strong magnetic

field posses paramagnetic properties in the confinement

and deconfinement phases [18–20].

In this work we explore the splitting of ground state

energy of neutral ρ0 and charged vector mesons ρ± de-

pending on its spin projection on the axis of the ex-

ternal abelian magnetic field. This exploration is im-

portant because such splitting can lead to the asymme-
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try of emitted neutral and charged particles above and

under reaction plane and contribute to the chiral mag-

netic effect. We also give a preliminary estimation of

g-factor of charged ρ±-mesons Articles [21–25] are also

devoted to the behaviour of hadron masses in the ex-

ternal abelian magnetic field. The magnetic moments of

ρ-mesons have been explored in [26–30]. Our value of

g-factor is in agreement with the previous lattice calcu-

lations [31].

2. Details of calculations. The technical details

of our calculations are presented in [32]. We generate

200−300 SU(3) statistically independent lattice gauge

configurations for lattice volumes 164, 184 and lattice

spacings a = 0.105, 0.115, and 0.125 fm. The U(1) ex-

ternal magnetic field is included only into the Dirac op-

erator which is used for the calculation of eigenfunctions

ψk and eigenvectors λk of a test quark in a background

gauge field Aµ. This field is a sum of non-abelian SU(3)

gluonic field and U(1) abelian constant magnetic field,

Aµ ij → Aµ ij +AB
µ δij , (1)

AB
µ (x) =

B

2
(x1δµ,2 − x2δµ,1). (2)

To take into account periodic boundary conditions for

fermions the twisted boundary conditions are superim-
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posed [33]. Magnetic field is directed along z-axis and

its value is quantized

qB =
2πk

(aL)2
, k ∈ Z, (3)

where q = −1/3 e. Eq. (3) leads to a minimal value of

magnetic field (eB)1/2 = 380MeV for lattice volume

184 and lattice spacing a = 0.125 fm. For each meson

we construct interpolation operators with given quan-

tum numbers. Then we calculate correlation functions

of these operators in Euclidean space

〈ψ†(x)O1ψ(x)ψ
†(y)O2ψ(y)〉A, (4)

where we use O1, O2 = γµ, γν for the vector particle and

γ5 for pion, µ, ν = 1, . . . , 4 are Lorenz indices. The Dirac

propagator for the massive quark can be approximated

by its eigenvectors and eigenvalues

D−1(x, y) =
∑

k<M

ψk(x)ψ
†
k(y)

iλk +m
, (5)

where M = 50 is the number of the lowest eigenmodes.

The correlator (4) is a sum of connected and discon-

nected contributions. The disconnected parts equal to

zero because we consider the isovector states. We make

3-dimensional Fourier transformation of correlators and

consider zero momentum p = 0 because we are inter-

ested in the ground energy state.

For particles with zero momentum their energy is

equal to its mass E0 = m0 in zero magnetic field. The

expansion of correlation function to exponential series

has the form

C̃(nt) = 〈ψ†(0, nt)O1ψ(0, nt)ψ
†(0, 0)O2ψ(0, 0)〉A =

=
∑

k

〈0|O1|k〉〈k|O
†
2|0〉e

−ntaEk , (6)

where a is the lattice spacing, nt is the number of nodes

in the time direction, Ek is the energy of the state with

quantum number k. At large nt the main contribution in

(6) comes from the ground state. On the lattice due to

the periodic boundary conditions the main contribution

to the ground state has the following form

C̃fit(nt) = A0e
−ntaE0 +A0e

−(NT−nt)aE0 =

= 2A0e
−NTaE0/2 cosh

[(

NT

2
− nt

)

aE0

]

, (7)

where A0 is a constant, E0 is the energy of the ground

state. Therefore we fit our data for the correlators

to the (7) function and find the ground state energy

as a fit parameter. In order to minimize the errors

and exclude the contribution of excited states we take

various values of nt from the interval 5 ≤ nt ≤ NT − 5.

We also use a smeared gaussian source and point sink

for our calculations.

The correlation functions for various spatial direc-

tions are given by the following relations

CV V
xx = 〈ψ̄(0, nt)γ1ψ(0, nt)ψ̄(0, 0)γ1ψ(0, 0)〉, (8)

CV V
yy = 〈ψ̄(0, nt)γ2ψ(0, nt)ψ̄(0, 0)γ2ψ(0, 0)〉, (9)

CV V
zz = 〈ψ̄(0, nt)γ3ψ(0, nt)ψ̄(0, 0)γ3ψ(0, 0)〉. (10)

The form of the density matrix for vector particle

with spin s = 1 gives the formulas for energies of meson

with various spin projections on the axis of the external

magnetic field.

For the sz = 0 one can obtain the energy of the

ground state from the CV V
zz correlator. The combina-

tions of correlators

CV V (sz = ±1) = CV V
xx + CV V

yy ± i(CV V
xy − CV V

yx ) (11)

gives the energies of mesons with sz = +1 and −1.

3. Results. In Fig. 1 we depict the mass of the ρ0-

meson with spin projections sz = ±1 increasing with the

Fig. 1. The ground state energy of the neutral ρ0-meson

with spin sz = ±1 as a function of magnetic field for lat-

tice volumes 164 and 184, lattice spacings a = 0.115 fm

and 0.125 fm and various bare quark masses

magnetic field value. The masses for sz = −1 and +1

are equal which is a manifestation of definite C-parity

of ρ0-meson. Fig. 1 demonstrates small lattice spacing

and lattice volume artefacts.

We do not present the neutral pion and ρ0-meson

with zero spin projection on the field axis, because there

is a contribution of pion to correlators of vector currents

in the external magnetic field due to abelian anomaly.
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This problem requires more detailed investigation and

will be studied in the future.

The energy levels of free charged pointlike particle in

a background magnetic field is described by the formula

E2 = |qB| − gszqB +m2, (12)

where g-factor characterizes magnetic properties of the

particle, q is the charge of the particle, sz is the spin

projection on the field direction, m is the particle mass

at B = 0. The Eq. (12) is true only for pointlike particle

and doesn’t take into account polarizabilities of mesons.

If the particle is not pointlike then the magnetic polar-

izabilty is not zero. In the relativistic case the meson

energy levels has the following form

E2 = |qB| − gszqB +m2 − 4πmβ(qB)2, (13)

where β is the magnetic polarizability, the charge of the

particle q = −e for π−, ρ− or q = +e for π+, ρ+ and m

is its mass at B = 0. We consider ρ−-mesons while ρ+

corresponds to the reversal of the direction of magnetic

field.

In Fig. 2 the energy of charged π±-meson is depicted.

Fig. 2. The squared energy of the ground state of the

charged π±-meson with spin s = 0 as a function of the

magnetic field for lattice volume 184, various lattice spac-

ings a = 0.084, 0.095, 0.115, 0.125 fm and the bare quark

mass equal to mq = 34.26MeV. The fit by solid curve cor-

responds to the data at lattice spacing a = 0.084 fm, the

dashed curve is for a = 0.095 fm, the dashed–dotted curve

describes data at a = 0.115 fm and dashed–dotted–dotted

curve corresponds to a = 0.125 fm

The fitting curves correspond to the fit function E2 =

|qB|+m2 − 4πmβ(qB)2, where m and β are the fit pa-

rameters. The masses of the π± increase with the field

value. The nonzero values of β indicate a not pointlike

compound nature of π±-mesons. In Fig. 3 we represent

Fig. 3. The squared energy of the ground state of the

charged ρ−-meson with spin sz = 0 as a function of the

magnetic field for lattice volume 184, various lattice spac-

ings a = 0.084, 0.095, 0.115, 0.125 fm and the bare quark

mass equal to mq = 34.26MeV. The various types of fit-

ting curves correspond to the same sets of data as in Fig. 2.

The data are fitted by Eq. (13) at sz = 0

the energy of the charged vector ρ meson with sz = 0,

fits were performed by the formula (13) at sz = 0, m

and β are also the fit parameters. The value of magnetic

polarizability is also not zero. For the calculation of β

value for the ρ−-meson with zero spin and π± meson we

has to increase statistics significantly, this will be done

in the following work.

We show the energy of the ρ−-meson with spin pro-

jections sz = +1 in Fig. 4,m, β, and g can be found from

the fit. The energy of ρ− ground state with sz = +1 in-

creases with the field value. The function (13) gives the

excellent fits for the all presented data.

The energy of the ρ− ground state with sz = −1

decreases with the field value. The data are well de-

scribed by the fitting function which include the term

with fourth power in B

E2 = |qB|− gszqB+m2− 4πmβ(qB)2 + k(qB)4, (14)

where k is the polarizability, corresponding to higher

power in magnetic field B. So there is some effect which

prevents the appearance of the tachyonic mode. We also

have to note that the fitting curves cross the axis of zero

energy for lattice spacings a = 0.115 fm and 0.125 fm be-

cause of the absence of lattice data for eB > 1.5GeV2.

Let us now discuss statistical errors. From Eq. (11)

one can easily see that the absolute errors are equal.

This leads to the fact that we have same absolute er-

rors for the correlators with sz = +1 and −1. From the

formula of correlator (7) we find error of the energy:

δE =
δC/C

a{−NT/2 + (NT /2− nt)th[(NT /2)Ea)]}
. (15)
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From this formula for large NT we have:

δE(sz = +1)

δE(sz = −1)
≃
C(sz = −1)

C(sz = +1)
. (16)

Correlator exponentially decrease with energy (7)

that leads to the increase of absolute errors of energy

when its value increases. This explains the difference

between errors on the Figs. 4 and 5.

Fig. 4. The squared energy of the ground state of ρ−-

meson with spin sz = +1 versus the field value for

lattice volume 184, various lattice spacings a = 0.084,

0.095, 0.115, 0.125 fm and the bare quark mass equal to

mq = 34.26MeV. The data are fitted by Eq. (13)

Fig. 5. The squared energy of the ground state of ρ− me-

son with spin sz = −1 versus the field value for lattice

volume 184, various lattice spacings a = 0.084, 0.095,

0.115, 0.125 fm and the bare quark mass equal to mq =

34.26MeV. The data are fitted by Eq. (14)

The presented data allow one to make a preliminary

estimation of g-factor of the ρ±-meson at “small” mag-

netic field from the following relation

g =
E2(s = +1)− E2(s = −1)

2(eB)
, (17)

which is obtained from (12). We use this formula to

cancel the contribution of polarizability of the charged

ρ-meson, which is the topic for another investigation.

After extrapolation to mq = 0 we obtain the value

g = 2.4 ± 0.2 for the lattice volume 184 and lattice

spacing a = 0.115 fm. This value is compatible with

experimental determination [34]. We will improve the

precision of this number in the following work.

Let us stress that Eq. (13) is, generally speaking,

valid in the quadratic approximation in B only and

may be spoiled by higher powers of B. We may im-

mediately observe that the role of these terms varies

dramatically for different spin orientations. While the

case of s = +1 (Fig. 5) is reasonably well described by

(13), the case of s = +1 Fig. 4 demands the inclusion

of the term k(eB)4 in the fitting formula. We consider

this as an evidence for the absence of nullification of

energy and related emergence of tachyonic mode. The

latter is clearly manifested by the extrapolation of (14)

at (Fig. 4) which crosses x-axis at B ∼ 1.75GeV2. Con-

trary to that, our calculations show that nonlinear terms

become important already at B ∼ 1GeV2 making en-

ergy dependence on B rather flat. The tachyonic mode

may lead to charged vector mesons condensation, and

our data are not supporting such an option. QCD seems

to disfavour this exciting opportunity. Of course, such

an important conclusion requires both further numeri-

cal investigations and search for theoretical explanation

of this phenomenon.

4. Conclusions. We have presented the exploring

of ground state energies the neutral ρ0- and charged

ρ±- and π-mesons in SU(3) lattice gauge theory. The

energies of the ρ0-meson with non-zero spin |sz| = 1 in-

crease. The investigation of ρ0 with zero spin requires

additional numerical calculations and will be done in

the future.

The energies of charged pions and ρ−-meson with

zero spin projection are described by Eq. (13) at sz = 0.

While the energy of charged ρ±-mesons with sz = +1

agrees with the formulae (13), the case of opposite spin

sz = −1 is well described by the dependence (14) and

demands the inclusion of terms with higher powers in

B. There is some mechanism which prevents the appear-

ance of tachyonic mode. We didn’t observe any evidence

in favour of charged vector meson condensation as pre-

sented in [35, 36]. We also estimate g-factor of ρ± in
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the chiral limit, it equals to g = 2.4± 0.2 for the lattice

volume 184 and lattice spacing a = 0.115 fm.

The authors are grateful to FAIR-STEP supercom-

puter center where these numerical calculations were

performed. This work was carried out with the finan-

cial support of Grant of President # MK-6264.2014.2

and FAIR-Russia Research Centre. E.V.L. is partially

supported by RFBR grant # 14-02-00395_a. O.T. is

supported by RFBR grant # 14-01-00647 and in part

by Heisenberg–Landau program. O.S. is partially sup-

ported by MD-3215.2014.2 and RFBR grant # 15-02-

07596, O.K. is partially supported by the RFBR grant

# 13-02-01387-a.

1. V. Skokov, A. Illarionov, and V. Toneev, Int. J. Mod.

Phys. A 24, 5925 (2009); arXiv: 0907.1396[nucl-th].

2. F. Bruckmann, G. Endrodi, and T. Kovacs, JHEP 04,

112 (2013); arXiv: 1303.3972 [hep-lat].

3. D. E. Kharzeev, L.D. McLerran, and H. J. Warringa,

Nucl. Phys. A 803, 227 (2008); arXiv: 0711.0950;

K. Fukushima, D.E. Kharzeev, and H. J. Warringa,

Phys. Rev. D 78, 074033 (2008); arXiv: 0808.3382.

4. P.V. Buividovich, M. N. Chernodub,

E. V. Luschevskaya, and M. I. Polikarpov, Phys.

Rev. D 80, 054503 (2009); arXiv:0907.0494 [hep-lat].

5. V. P. Gusynin, V.A. Miransky, and I.A. Shovkovy, Nucl.

Phys. B 462, 249 (1996); hep-ph/9509320.

6. S. P. Klevansky and R.H. Lemmer, Phys. Rev. D 39,

3478 (1989).

7. D. Ebert, K.G. Klimenko, M. A. Vdovichenko, and

A. S. Vshivtsev, Phys. Rev. D 61, 025005 (1999); hep-

ph/9905253.

8. E. S. Fraga and A. J. Mizher, Phys. Rev. D 78, 025016

(2008); arXiv: 0804.1452; Nucl. Phys. A 820, 103C

(2009); arXiv: 0810.3693.

9. A. Goyal and M. Dahiya, Phys. Rev. D 62, 025022

(2000); hep-ph/9906367.

10. M. D’Elia, S. Mukherjee, and F. Sanfilippo, Phys. Rev.

D 82, 051501 (2010); arXiv: 1005.5365v2 [hep-lat].

11. G. S. Bali, F. Bruckman, G. Endrodi, Z. Fodor,

S.D. Katz, S. Krieg, A. Schaefer, and K.K. Szabo,

JHEP 02, 044 (2012); arXiv: 1111.4956 [hep-lat].

12. E. S. Fraga and A. J. Mizher, Phys. Rev. D 78, 025016

(2008); arXiv: 0804.1452; Nucl. Phys. A 820, 103C

(2009); arXiv: 0810.3693; A. J. Mizher, M.N. Chern-

odub, and E. S. Fraga, Phys. Rev. D 82, 105016 (2010).

13. R. Gatto and M. Ruggieri, Phys. Rev. D 83, 034016

(2011); arXiv: 1012.1291; R. Gatto and M. Ruggieri,

Phys. Rev. D 82, 054027 (2010); arXiv: 1007.0790.

14. K. Kashiwa, Phys. Rev. D 83, 117901 (2011); arXiv:

1104.5167.

15. S. Kanemura, H.-T. Sato, and H. Tochimura, Nucl.

Phys. B 517, 567 (1998); arXiv: hep-ph/9707285.

16. K.G. Klimenko, Theor. Math. Phys. 90, 1 (1992).

17. V.G. Bornyakov, P.V. Buividovich, N. Cundy,

O.A. Kochetkov, and A. Schaefer, Phys. Rev. D 90,

034501 (2014); arXiv: 1312.5628 [hep-lat].

18. C. Bonatti, M. D’Elia, M. Mariti, F. Negro, and F. San-

filippo, PoS Lattice (2013), arXiv:1312.5070.

19. C. Bonatti, M. D’Elia, M. Mariti, F. Negro, and F. San-

filippo, arXiv: 1310.8656.

20. G. S. Bali, F. Bruckman, G. Endrodi, and A. Schaefer,

PoS Lattice (2013); arXiv: 1310.8145.

21. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, and

Yu.A. Simonov, Phys. Rev. D 87, 094029 (2013); arXiv:

1304.2533 [hep-ph].

22. M.A. Andreichikov, B.O. Kerbikov, V.D. Orlovsky, and

Yu.A. Simonov, Phys. Rev. D 89, 074033 (2014); arXiv:

1312.2212 [hep-ph].

23. V.D. Orlovsky and Yu.A. Simonov, JHEP 1309, 136

(2013); arXiv:1306.2232 [hep-ph].

24. Y. Hidaka and A. Yamamoto, Phys. Rev. D 87, 094502

(2013); arXiv:1209.0007 [hep-ph].

25. H. Liu, L. Yu, and M. Huang; arXiv:1408.1318 [hep-ph]

26. A.M. Badalian and Yu.A. Simonov, Phys. Rev. D 87,

074012 (2013); arXiv:1306.2232 [hep-ph].

27. A. Samsonov, JHEP 0312, 061 (2003); arXiv:hep-

ph/0308065.

28. B. Owen, W. Kamleh, D. Leinweber, B. Menadue, and

S. Mahbub, arXiv:1501.02561 [hep-lat].

29. D. Djukanovic, E. Epelbaum, J. Gegelia, and U.-

G. Meiner, arXiv:1309.3991 [hep-ph].

30. V.V. Braguta and A. I. Onishchenko, Phys. Rev. D 70,

033001 (2004); hep-ph/0403258.

31. J.N. Hedditch, W. Kamleh, B. G. Lasscock, D.B. Lein-

weber, A.G. Williams, and J. M. Zanotti, Phys. Rev. D

75, 094504 (2007).

32. E.V. Luschevskaya and O.V. Larina, Nucl. Phys. B 884

, 1 (2014); arXiv: 1203.5699 [hep-lat] .

33. M.H. Al-Hashimi and U. J. Wiese, Ann. Phys. 324, 343

(2009); arXiv: 0807.0630 [quant-ph].

34. D.G. Gudino and G.T. Sanchez, arXiv: 1305.6345 [hep-

ph].

35. M.N. Chernodub, Phys. Rev. D 82, 085011 (2010);

arXiv: 1008.1055 [hep-ph].

36. M.N. Chernodub, Phys. Rev. Lett. 106, 142003 (2011);

arXiv: 1101.0117v2 [hep-ph].

Письма в ЖЭТФ том 101 вып. 9 – 10 2015


