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The photogalvanic effect is studied in electron gas over the liquid He surface with the presence of quan-

tizing magnetic field. The gas is affected by the weak alternating microwave electric field tilted towards the

surface normal. Both linear and circular photogalvanic effects are studied. The current occurs via indirect

phototransition with the participation of ripplons emission or absorption. The photogalvanic tensor has strong

resonances at the microwave frequency ω approaching to the frequencies of transitions between size-quantized

subbands. The resonances are symmetric or antisymmetric, depending on a tensor component. Other reso-

nances appear at ω ≈ nωc, where n being integer and ωc is the cyclotron frequency. It is found that the latter

resonances split to two peaks connected with emission or absorption of ripplons. The calculated photogalvanic

coefficients are in accord with the experimental observed values.
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Introduction. The stationery surface photocurrent

(in other words, surface photogalvanic effect, SPGE)

appears along the border of isotropic homogeneous

bounded medium under the action of tilted alterna-

tive electric field [1, 2]. This effect was also studied in

size-quantized systems [3–6]. Recently, SPGE attracted

attention [7] as a tentative source of the microwave-

induced photoresponse oscillations in 2D electron gas

over the liquid He surface (EGOHeS). The microwave-

induced resistance oscillations (MIRO) were the subject

of numerous publications (see, e.g., review [8]). In par-

ticular, this effect was studied theoretically [9–11] in re-

lation to EGOHeS (the theory of EGOHeS, see, e.g.,

in [12]).

Surface photogalvanic effect can be considered as an-

other source of the observed photoresponse oscillations

manifesting itself without stationary in-plane electric

field. The theory of SPGE in EGOHeS was developed

in [13] for the case of no magnetic field.

The present paper is a continuation of [13] with ac-

counting for a strong magnetic field B directed perpen-

dicular to the He surface (x, y). The forced progressive

in-plane electron motion in a quantizing magnetic field

is a result of the transitions between size-quantized sub-

bands with synchronous directed in-plane transitions

between the Landau states. The mathematical reflection

of this idea is the second order optical transition prob-

ability with the participation of scattering, in partic-

ular, ripplon-induced scattering. The translational mo-

1)e-mail: entin@isp.nsc.ru

tion results from the interference of transition ampli-

tudes caused by out- and in-plane components of alter-

nating electric field. The scattering leads to a change

of the in-plane electron momentum with a shift of the

orbit center.

We will mainly follow the conditions of the experi-

ment [7] on MIRO. We consider the electron gas of low

density (∼ 106 cm−2) over the He3 or He4 surface. At

such low density the electron gas is non-degenerate. The

photon energy is chosen close to the distance between

the ground and the first excited size-quantized electron

states ∆. The magnetic field is assumed to be weak

enough so that the cyclotron quantum is some times

less than ∆.

The mentioned resonance works as a magnification

factor for transitions via the intermediate state. The

mechanism of SPGE can be illustrated as follows. The

population of subbands changes in- or contra-phase with

the normal component of the alternating field if the fre-

quency exceeds or it is less than ∆/~ and has π/2 shift

if ~ω = ∆. This fact, together with the phase shift of

the in-plane field component, determines the current di-

rection.

Problem formulation. The phenomenology of

SPGE in a magnetic field B = bB ≡ B(0, 0, bz) is de-

termined by the relation for the current density

j = α1Re
[

(E− n(nE))(nE∗)
]

− iα2

2
[n, [E,E∗]] +

+ α3[(E− n(nE)),b](nE∗) +
iα4

2
[[n, [E,E∗]],b], (1)
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where n is the outer normal to the quantum well,

E(t) = Re(Ee−iωt) is the uniform microwave electric

field (E = (Ex, Ey, Ez) is its complex amplitude). Real

parameters αi are the functions of magnetic field value

B; α1 and α3 correspond to linear and α2 and α4 – to

circular photogalvanic effects, respectively. “Drift” com-

ponents α1 and α2 exist in the case of zero magnetic

field, while the “Hall” components α3 and α4 originate

from the magnetic field action, change their signs with

the magnetic field and vanish if B = 0.

The current components ∝ α2, α4 can be treated

similar to translational motion of a rotating wheel. Elec-

tromagnetic field spin flow ic[EE∗] (c is speed of light)

transfers its angular momentum to electrons as a mo-

ment of force. The friction converts this moment to the

translational electron motion.

We will base on the same model of 2D EGOHeS as in

[13]. Electrons are attracted to He via the dielectric im-

age force and the normal static electric field which com-

poses Coulomb-like states χl(z) with energies ǫl. The

cyclotron frequency is supposed to be much lower than

the Bohr energy. The interaction of electrons with sur-

face waves (ripplons) and the homogeneous alternating

electric field leads to the stationary surface current with

density j.

Eq. (1) for current contains additive contributions

∝ EzEx and ∝ EzEy. The system under consideration is

axially-symmetric. Hence, to determine all components

of the photogalvanic tensor, one can find only x compo-

nent of the current.

To calculate the photocurrent, we will use the ap-

proach first suggested by Titeika [14]. According to this

approach, if unpertubed electron states are localized,

the current can be expressed via the transition proba-

bility between these states. For the x-component of the

current density, one can write

jx =
2e

S

∑

β,β′

(Xβ −Xβ′)Wβ→β′f(εβ)[1 − f(εβ′)], (2)

where Wβ→β′ is the probability of transitions (caused

by perturbation) between the electron states with quan-

tum numbers β and β′, εβ and Xβ are the energy and

the center of localization, correspondingly, f(εβ) is the

Fermi function, S is the system area, e is the electron

charge.

Let us choose the vector potential of magnetic field

in the form of A = (0, Bx, 0) when the electron states

are localized in the x-direction. Electron states are de-

scribed by a set of quantum numbers β = (l, n, ky), l

is the number of size quantized level, n is the Landau

number, ky is the y-component of electron momentum:

|β〉 = 1√
Sa

eikyyφn

(

x−Xβ

a

)

χl(z),

where φn(ξ) are dimensionless oscillator functions,

Xβ = −bza
2ky is the localization center (the cyclotron

orbit center), a =
√

c/|e|B is the magnetic length (we

set ~ = 1). These states have energies εβ = εn+ǫl, where

εn = ωc(n+1/2) is the n-th Landau level (n = 0, 1, ...),

ωc = |e|B/mc is the cyclotron frequency, ǫl is the l-th

size quantization level (l = 1, 2, ...). If image attraction

to liquid He prevails ǫl = −1/(2ma2
B
l2),

χ1(z) = 2z exp (−z/aB)a
−3/2
B

,

χ2(z) = z(2− z/aB) exp (−z/2aB)(2aB)
−3/2, (3)

where aB = κ/me2 is the effective Bohr radius, κ =

= 4κ1(κ1 + κ2)/(κ2 − κ1), κ1,2 are dielectric constants

of gaseous and liquid helium. Note, that the functions

(3) can be used also in the presence of the normal static

field, if to consider them as variational functions with

fitting parameter aB.

In our case transition probability Wβ→β′ is deter-

mined by the interaction with a microwave field and

ripplons with the Hamiltonian Hint(t) = Uer + F(t).

The Hamiltonian of electron-ripplon interaction Uer is

(U)er = S−1/2
∑

q

Jq(b
+
−q

+ qq)Vq(z), (4)

where

Vq(z) =
1

maB3

√

q

2ρ
ωqV̄q(z); V̄q(z) =

aB2

z2
[1−qzK1(qz)],

(5)

Jq = eiqr, r = (x, y), b+
q
, bq are the operators of creation

and destruction of ripplon with wave vector q and fre-

quency ωq = q3/2
√

σ0/ρ, ρ is the liquid helium density,

σ0 is the helium surface tension coefficient. Interaction

of electron with microwave field is given by

F(t) =
ie

2ω
Eve−iωt + h.c. ≡ 1

2
Ue−iωt + h.c.; (6)

U =
ie

ω
Ev =

ie

ω
(E‖v‖ + Ezvz), (7)

where v is the operator of electron velocity. In the first

order on the interaction Hamiltonian, the contributions

of (U)er and F(t) to the transition probability are ad-

ditive and do not produce the photocurrent. Hence, the

transition amplitude should be searched in the second

(mixed in (U)er and F(t)) order. In this order we have
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Wβ→β′ =
π

2S

∑

q,±

(

Nq +
1

2
± 1

2

)

×

×
[

δ(εβ,β′ − ω ∓ ωq)|(Bq)ββ′ |2 +
+ δ(εβ,β′ + ω ∓ ωq)|(B̃q)ββ′ |2

]

, (8)

where

(Bq)ββ′ =
∑

β1

[

(Iq)β,β1
Uβ1,β′

η − iω + iεβ1,β′

+

+
Uββ1

(Iq)β1,β′

η + iω + iεβ1,β

]

(η = +0). (9)

Here Iq = JqVq(z), εβ,β′ means εβ−ε′β, Nq is the ripplon

equilibrium distribution function. Quantity (B̃q)ββ′ is

determined by Eq. (9) with change ω → −ω and U →
→ U+. For matrix elements (Iq)β,β′ one can write the

following expressions:

(Iq)β,β′ = (Jq)n,ky ;n′,k′

y
(Vq)l,l′ , (10)

where

(Jq)n,ky ;n′,k′

y
= δX,X′−a2qy i

|n−n′| ×
× ei[qxX+bzuq sin (2ϕ)/2]eibz(n

′−n)ϕJnn′(uq);

Jnn′(uq) =

√

min (n, n′)!

max (n, n′)!
u|n−n′|/2
q e−uq/2L

|n−n′|
min (n,n′), (11)

Lm
n (u) is the generalized Laguerre polynomial, uq =

= q2a2/2, ϕ is the polar angle of vector q (qx = q cosϕ,

qy = q sinϕ); (Vq)l,l′ =
∫∞

0
dzVq(z)χl(z)χl′(z). We will

consider the PGE at resonance conditions, when the mi-

crowave frequency is close to the distance between size-

quantization subbands l = 1 and 2. The expressions for

the necessary quantities (Vq)1,1, (Vq)2,2, and (Vq)1,2 can

be found, for example, in [13].

The matrix elements of operator U are

Uβ,β′ =
ie

ω
δX,X′

{

δl,l′
aωc√
2

[

(iEx + bzEy)
√
nδn,n′+1 +

+ (−iEx + bzEy)
√
n′δn′,n+1

]

+ δn,n′Ez(vz)l,l′
}

. (12)

Using Eqs. (10), (11), and (12) we get for PGE cur-

rent:

jx = − 2e

2πa2
e2a2bz
ω2

2πaωc

2
√
2S

×

×
∑

q,±

∑

n,l;n′,l′

f(εn,l)[1− f(εn′,l′)]×

× Jn,n′

(

Nq +
1

2
± 1

2

)

qyVl,l′ ×

×
{

δ(εn,n′ + ǫl,l′ − ω ∓ ωq)×

× Re
[

E∗
z

∑

l1

(

Vl,l1(vz)l1,l′

η − iω + ǫl1,l′
+

(vz)l,l1Vl1,l′

η + iω + ǫl1,l

)∗

×

×isig(n′ − n)
(

eibzϕE−

√
n′+1Jn,n′+1−

√
nJn−1,n′

ωc − ω
−

− e−ibzϕE+

√
n′Jn,n′−1 −

√
n+ 1Jn+1,n′

ωc − ω

)]

+

+ (ω → −ω,E → E∗)

}

, (13)

where E± = Ex±ibzEy, εn,n′ = ωc(n−n′), ǫl,l′ = ǫl−ǫl′ ,

sig(x) = sgn(x+ 0).

Quantities Jn,n′ justify the relations:

(
√
n′ + 1Jn,n′+1 −

√
nJn−1,n′)sig(n′ − n) =

√
uqJn,n′ ,

(
√
n′Jn,n′−1 −

√
n+ 1Jn+1,n′)sig(n′ − n) =

√
uqJn,n′ .(14)

Using Eq. (14) one can rewrite Eq. (13) in the form

jx =
e3aωc

2
√
2πω2

∑

±

∑

n,l;n′,l′

f(εn,l)[1 − f(εn′,l′)]×

×
∞
∫

0

dqq2J2
n,n′

√
uq

(

Nq +
1

2
± 1

2

)

Vl,l′ ×

×
{

δ(εn,n′ + ǫl,l′ − ω ∓ ωq)×

× Re
[

∑

l1

( Vl,l1(vz)l1,l′

η − iω + ǫl1,l′
+

(vz)l,l1Vl1,l′

η + iω + ǫl1,l

)∗

E∗
z ×

× ωcEx − ibzωEy

ω2
c − ω2

]

+ (ω → −ω,E → E∗)

}

. (15)

Because of low electron concentration, function

f(ε) = e(µ−ε)/T is the Boltzmann distribution function

(µ being the chemical potential), f ≪ 1. We will con-

sider the resonance case when microwave frequency is

close to the distance between subbands with l = 1 and

2. Assuming that ∆ ≫ T and leaving only resonance

terms one can reduce Eq. (15) to:
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Fig. 1. Function F versus magnetic field at T = 0.2K. The widening of the Landau levels is neglected. The double peaks

correspond to ω = nωc for n = 8, 7, 6, 5, 4 (from left to right). Insert: the fine structure of double peak n = 5 at different

temperatures

jx =
nee

3z12∆a(1− e−ωc/T )

2
√
2mω2(ω2

c − ω)
×

×
∑

±,n,n′

e−nωc/T

∞
∫

0

dqq2J2
n,n′ ×

×√
uq

(

Nq+
1

2
±1

2

)

V1,1Im

(

E∗
z (ωcEx − ibzωEy)×

×
{ V1,2

η − iδ
δ[ωc(n− n′)− ω ∓ ωq] +

+
V1,2

η + iδ
δ(ωc(n− n′) + ω ∓ ωq] +

+
( V1,1

η − iδ
+

V2,2

η + iδ

)

δ(ωc(n− n′)− δ ∓ ωq)
}

)

. (16)

Here ∆ = ǫ2− ǫ1, δ = ∆−ω is the resonance detuning,

ne is the electron density.

At the fulfilment of condition ωc ≫ T Eq. (16) can

be simplified:

jx =
CF

δ2 + η2

[

Re(ExE
∗
z )ωcδ + Im(ExE

∗
z )ωcη −

− Re(EyE
∗
z )bzωη + Im(EyE

∗
z )bzωδ

]

, (17)

where

F =
∑

n

[

(

Nq + 1
)

θ(ω − nωc) +Nqθ(nωc − ω)
]

×

×
(ωq

ω

)4/3 1

n!
un
q e

−uq V̄1,1(qaB)V̄1,2(qaB)

∣

∣

∣

∣

∣

ωq=|ω−nωc|

, (18)

C =
nee

3z12∆a2ρ2/3

12m3a6
B
ω2/3(ω2 − ω2

c )σ
5/3
0

, (19)

uq = ω
4/3
q (ρ/σ0)

2/3a2/2, qaB = ω
2/3
q (ρ/σ0)

1/3aB.

For V̄ij(y) we have

V̄11(y) = 2y2(y2 − 4)−3/2
[

(y2 − 4)1/2 − 2 arccos(2/y)
]

,

−V̄12(y) = (8y2
√
2/9)(4y2 − 9)−5/2

{

(4y2 − 9)1/2(9 +

+ 8y2)− 36y2 arccos[3/(2y)]
}

.

The comparison of Eq. (1) with Eq. (17) gives for the

photogalvanic coefficients αi = CFai:

a1 =
ωcδ

η2 + δ2
, a2 =

ωcη

η2 + δ2
,

a3 =
ωη

η2 + δ2
, a4 =

ωδ

η2 + δ2
. (20)
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Eq. (18) has been obtained neglecting the Landau level

widths. We have remained the widening η of the in-

tersubband distances in the prefactors ai only to get

the finite result. To include the Landau level widths,

one should blur the delta-functions under the integral in

Eq. (18) as δ(x) → η1/(x
2 + η21)/π. In principle, widths

η and η1 may be different, but here we will suppose

η1 = η.

Thus, the dependence of the photogalvanic coeffi-

cients on the magnetic field is mainly determined by

the function F . Fig. 1 shows this function in the case

of zero electron level widths. For numerical calculations

we used the parameters of He3 and electron gas close

to the conditions of experiment [7]: κ1 = 1, κ2 = 1.057,

ρ = 0.082 g/cm−3, σ0 = 0.1553 erg/cm−2, and ne =

= 1.4 · 106 cm−2. The parameter aB = 8.7 · 10−7 cm is

chosen to fit the intersubband distance ∆ = 0.38meV

corresponding to the experiment [7]. The dependence

of F (B) contains narrow twin peaks in the vicinity of

cyclotron resonance harmonics ω = nωc. At high tem-

perature, the left and right peaks have the same am-

plitudes. With the drop of temperature, the right peak

is suppressed as compared to the left one. The way the

widening of electron levels affect the shape of resonances

is demonstrated in Figs. 2–4.

Fig. 2. The evolution of F versus magnetic field with the

change of the Landau level width in the region of peak

ω/ωc = 5. The widening smears the twin structure

Analysis of results. The photocurrent dependence

on the parameters has a huge “zoo” of resonances. First,

this is the resonance ~ω ≈ ∆ in coefficients ai (see

Eq. (20)). This resonance originates from the participa-

tion of Ez component in transitions and it is not spe-

cific for the case with magnetic field. According to our

previous papers, this resonance appears due the inter-

mediate state. It determines the symmetric or antisym-

Fig. 3. The same as in Fig. 2 for T = 0.03K

Fig. 4. The same as in Fig. 2 for T = 0.01K

metric behavior of PGE coefficients in the vicinity of

resonance frequency, depending on the kind of electro-

magnetic field polarization (linear or circular). In addi-

tion to SPGE coefficients existing also at B = 0 [13],

the magnetic field leads to the Hall photocurrent com-

ponent appearance.

Another resonance is the cyclotron resonance when

the frequency of external field coincides with the cy-

clotron frequency. In the domain of parameters which

we concentrate here this resonance is far from our focus

(and the experimental situation in [7]).

One more kind of resonances is the cyclotron reso-

nance harmonics ω ≈ nωc (corresponding to magnetic

fields Bn = m∆c/en) on which we focus our atten-

tion (see Fig. 1). These resonances originate from the

participation of the scattering in the transition pro-

cesses induced by alternating electric field. Scattering

violates the linear character of cyclotron motion result-
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ing in cyclotron harmonics. Such resonances are typical

for MIRO.

According to Eq. (20), the maxima (as functions of

detuning δ) of the Hall components of the photogalvanic

tensor α3, α4 exceed corresponding drift components

α1, α2: maxδ(α1) : maxδ(α2) : maxδ(α3) : maxδ(α4) =

= 0.5 : 1 : n : 0.5n, where ω = nωc. This is typical

situation for transport in a strong magnetic field where

the drift along the drawing force is weaker than in the

Hall direction. The maximal values of symmetric reso-

nances are 2 times larger than antisymmetric ones.

In fact, these resonances are twinned (see insert to

Fig. 1). Note, that in quasielastic approximation the res-

onances should be solitary. For example, this is the case

when impurity scattering is taken into account only. In

the considered situation of ripplon scattering the reso-

nance splitting originates from the energy of emitted

or absorbed ripplon ωq = |nωc − ω|. At B → Bn,

ωq → 0, hence the process probability vanishes. In par-

ticular, if the temperature is relatively high, T > ωq,

F (B) ∝ |B − Bn|4n/3+3 ln(1/|B − Bn|). This explains

deep dips between the twin peaks at nωc = ω.

On the other hand, the peaks splitting can be es-

timated as
√

σ0/ρ(2n + 9/2)3/4n−7/4(m∆)3/4 · 2mc/e.

This estimate is consistent with insert to Fig. 1. The

left and right peaks in pairs correspond to ripplons

emission/absorption, accordingly. Their height ratio is

(Nq + 1)/Nq. At a T ≫ ωq the peaks heights equalize

and behave ∝ T ; when T → 0 both peaks go down,

but the left one tends to constant, while the right one

is suppressed ∝ exp (−ωq/T ).

In the aforesaid specific conditions corresponding to

[7] the parameter C has the value C = −88 pA · cm/V2

at n = 5. If to suppose the level width η = 10−4∆

and T = 0.2K this yields maximum of photogalvanic

coefficient maxδ(α3) = 2.5maxδ(α1) = 5maxδ(α2) =

= 2.5maxδ(α4) = 2.2 pA · cm/V2 achieved at magnetic

field B = 0.647T. These values are commensurable with

the order of MIRO oscillations in [7].

In conclusion, we have found the value of photocur-

rent along the charged liquid helium surface affected by

tilted alternating electric field in the presence of vertical

magnetic field. Different photogalvanic coefficients rep-

resent responses to the linear and circular polarization

of drift (invariant with respect to the sign of magnetic

field) and Hall (proportional to this sign) currents. The

ripplon scattering mechanism was taken into account.

Surface photogalvanic effect coefficients have (symmet-

ric or antisymmetric) their resonant behavior when the

field frequency approaches the intersubband one. Be-

sides, resonances on the cyclotron harmonics are ob-

served. The current value is consistent with that ob-

served in the experiment.
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