Магнитные поляроны в легированных манганитах $La_{0.7}Ca_{0.3}MnO_3$, $La_{0.7}Ba_{0.3}MnO_3$ и $La_{0.7}Sr_{0.3}MnO_3$

Т. И. Арбузова¹⁾, С. В. Наумов

Институт физики металлов им. Михеева УрО РАН, 620137 Екатеринбург, Россия

Поступила в редакцию 20 февраля 2015 г.

После переработки 5 мая 2015 г.

Исследованы парамагнитные свойства легированных манганитов, содержащих 30 % ионов Mn⁴⁺. Показано, что для составов La_{0.7}A_{0.3}MnO₃ (A = Ca, Ba), имеющих полупроводниковый характер проводимости при $T > T_{\rm C}$, из экспериментальных зависимостей $\chi^{-1}(T)$ можно определить значение ферромагнитной температуры Кюри. В проводящем La_{0.7}Sr_{0.3}MnO₃ нелинейное поведение $\chi^{-1}(T)$ объясняется суммированием вкладов изолированных ионов Mn, парамагнитных и ферромагнитных поляронов с повышенными магнитными моментами. Характер магнитного перехода (1-го или 2-го рода) и симметрия кристаллической решетки не влияют на образование коррелированных поляронов в парамагнитной области.

DOI: 10.7868/S0370274X15110089

Перовскитоподобные манганиты являются сильно коррелированными системами, в которых связь между магнитной и электронной подсистемами приводит к появлению наномасштабных неоднородностей разного типа. Имеется ограниченное число работ по магнитным свойствам манганитов в высокотемпературной области существенно выше $T_{\rm C}$ [1–4]. Стехиометрический состав LaMnO₃ является антиферромагнетиком с температурой Нееля $T_N \approx 140 \, \mathrm{K}$. Наличие вакансий в катионных подрешетках или замещение ионов La³⁺ двухвалентными ионами Ca²⁺, ${\rm Ba^{2+}}$ и ${\rm Sr^{2+}}$ приводят к появлению ионов ${\rm Mn^{4+}}$ и ферромагнитному порядку за счет сверхобмена между разновалентными ионами $Mn^{3+}(t^3_{2q}e^1_q)-Mn^{4+}(t^3_{2q})$ и двойного обмена при переносе e_g-электронов [5]. Соединения LaMnO_{$3+\delta$} (LMO) с вакансиями в катионных подрешетках сохраняют полупроводниковый характер проводимости при всех температурах [6]. В La_{0.7}Ca_{0.3}MnO₃ (LCMO) и La_{0.7}Ba_{0.3}MnO₃ (LBMO) вблизи $T_{\rm C}$ наблюдается переход металл–изолятор [7]. Состав La_{0.7}Sr_{0.3}MnO₃ (LSMO) имеет металлический характер проводимости при $T > T_{\rm C}$ [8, 9]. Для определения типа магнитного перехода (первого или второго рода) часто используют критерий Банерджи (зависимости $H/\sigma = f(\sigma^2)$) [10]. В LBMO и LSMO магнитные переходы являются переходами второго рода, а LCMO при $T_{\rm C}$ испытывает магнитоструктурный переход первого рода [11–13].

В данной работе исследовалось влияние свобод-

ных носителей заряда, типа магнитных переходов

и симметрии решетки на парамагнитные свойства

легированных манганитов La_{1-x}A_xMnO₃ с одинако-

вым содержанием ионов Mn^{4+} и максимальным значением $T_{\rm C}$. Следует отметить, что в литературе при

обсуждении аномальных магнитных свойств манга-

синтезом из La₂O₃, Mn₃O₄, CaO, BaCO₃ и SrCO₃. Предварительные отжиги проводились при температурах 1000–1200 °C с промежуточными перетираниями. Порошки прессовали в таблетки и спекали при T = 1300 °C в течение 24 ч. Затем все образцы отжигали при 600 °C на воздухе в течение 10 ч и закаливали. Рентгенографические исследования проводились при комнатной температуре на дифрактометре ДРОН-2.0. Образец LCMO имеет орторомбическую структуру *Pnma*, а остальные три образца – ромбоэдрическую структуру $R\bar{3}c$. Увеличение ионного радиуса легирующего элемента по сравнению с r = 1.36 Å иона La³⁺ приводит к увеличению объема решетки (см. таблицу). Магнитная восприимчивость $\chi_{dc}(T)$ измерялась

нитов и применимости моделей фазы Гриффитса или магнитных поляронов основное внимание уделяется области температур $T < 1.2T_{\rm C}$. Мы обсуждаем температурное поведение парамагнитной восприимчивости при высоких температурах, T > 400 К, когда для однородных ферромагнетиков должен выполняться закон Кюри–Вейсса.]. Поликристаллические образцы LMO, LCMO, LBMO и LSMO были получены твердофазным синтезом из LaoO2, Mn2O4, CaO, BaCO2, и SrCO2

¹⁾e-mail: naumov@imp.uran.ru

Состав	LMO	LCMO	LBMO	LSMO
$V/{ m форм.}$ ед., Å 3	58.69	57.73	59.83	58.42
Тип решетки	$R\bar{3}c$	Pnma	$R\bar{3}c$	$R\bar{3}c$
$T_{\rm C},{ m K}$	162	259	340	345
T_0, \mathbf{K}	157	252	346	343
$C_{\infty},\mathrm{cm}^3\cdot\mathrm{K/r}$	0.0085	0.0084	0.0058	0.67
B, см ³ · K ² /г	4.58	4.46	3.20	-260

Структурные и магнитные характеристики образцов $La_{0.7}A_{0.3}MnO_3$

в области 80 < $T<650\,{\rm K}$ на магнитных весах с чувствительностью $10^{-8}\,{\rm cm}^3/{\rm \Gamma}$ в полях $H<10\,{\rm \kappa}$ Э. Ферромагнитная температура Кюри определялась по максимуму производной восприимчивости в слабом магнитном поле.

На рис. 1 представлены температурные зависимости $\chi_{dc}(T)$ в поле H = 90 Э. Значения ферро-

Рис. 1. Температурные зависимости $\chi_{dc}(T)$ в поле H = 90 Э для образцов LaMnO_{3+ δ} (1), La_{0.7}Ca_{0.3}MnO₃ (2), La_{0.7}Ba_{0.3}MnO₃ (3) и La_{0.7}Sr_{0.3}MnO₃ (4)

магнитных температур Кюри $T_{\rm C}$ приведены в таблице. Они согласуются с литературными данными [1,3,4,11,13–19], в соответствии с которыми температура Кюри в LCMO варьируется от 218 до 270 К, в LBMO – от 310 до 340 К, а в LSMO – от 352 до 378 К. Причинами большого разброса значений ферромагнитной температуры Кюри в манганитах могут служить отклонения от стехиометрического состава, неоднородное ферромагнитное состояние и метод определения $T_{\rm C}$ (из магнитных измерений, магнитной нейтронографии, теплоемкости).

Одним из видов наномасштабных неоднородностей являются магнитные поляроны, которые могут существовать вблизи температуры Кюри как при $T < T_{\rm C}$, так и при $T > T_{\rm C}$ [20]. Температурные зависимости обратной парамагнитной восприимчивости для исследованных образцов La_{1-x}A_xMnO₃ представлены на рис. 2. Они имеют выпуклый к оси

Рис. 2. Температурные зависимости обратной магнитной восприимчивости для образцов La $MnO_{3+\delta}$ (1), La_{0.7}Ca_{0.3}MnO₃ (2), La_{0.7}Ba_{0.3}MnO₃ (3) и La_{0.7}Sr_{0.3}MnO₃ (4). Сплошные линии – расчет по формуле (3)

T вид, характерный для ферромагнетиков в области ближнего порядка [21]. Нелинейный вид $\chi^{-1}(T)$ может указывать на неоднородное парамагнитное состояние или на изменение обменных параметров вблизи температуры магнитного перехода [15, 22–24]. Для однородного парамагнитного состояния должен выполняться закон Кюри–Вейсса:

$$\chi = C/(T-\theta) = N\mu_{\text{eff}}^2 \mu_{\text{B}}^2/3k_{\text{B}}(T-\theta), \qquad (1)$$

где N — число магнитных ионов, $\mu_{\rm eff}$ — усредненный эффективный магнитный момент изолированных ионов Mn, $\mu_{\rm B}$ — магнетон Бора, $k_{\rm B}$ — постоянная Больцмана, θ — парамагнитная температура Кюри. В легированных манганитах не зависящий от температуры эффективный магнитный момент определяется выражением

$$\mu_{\text{eff}}^2 = (1-x)g^2 S_1 (S_1 + 1)\mu_{\text{B}}^2 + xg^2 S_2 (S_2 + 1)\mu_{\text{B}}^2, \quad (2)$$

где x – концентрация ионов Mn^{4+} , $g \approx 2$ [18, 25], $S_1 = 2$ и $S_2 = 3/2$ – спины ионов Mn^{3+} и Mn^{4+} соответственно. Если число ионов Mn^{4+} составляет 30% от общего числа ионов марганца, то эффективный магнитный момент не должен превышать величину $\mu_{\rm eff} = 4.62 \,\mu_{\rm B}$. Экспериментальные температурные зависимости обратной восприимчивости показывают, что в области $T_{\rm C} < T < 600$ К значения $\mu_{\rm eff}$, определенные из наклона касательной к кривой $\chi^{-1}(T)$, превышают расчетную величину и плавно уменьшаются при повышении температуры. В LMO эффективный магнитный момент изменяется от $6.44 \,\mu_{\rm B}$ до $4.81 \,\mu_{\rm B}$ в области температур T = (210-600) К, в LCMO $\mu_{\rm eff}$ уменьшается от $6.0 \,\mu_{\rm B}$ до $4.99 \,\mu_{\rm B}$ в области T = (290-600) К, а в LBMO от $5.21 \,\mu_{\rm B}$ до

Письма в ЖЭТФ том 101 вып. 11-12 2015

 $4.72 \,\mu_{\rm B}$ в интервале $T = (380-500) \,{\rm K}$. Существенно более высокие значения эффективного магнитного момента имеет проводящий образец LSMO: при $T \approx 370 \,\mathrm{K} \,\mu_{\mathrm{eff}} \approx 57 \,\mu_{\mathrm{B}}$, а при $T \approx 600 \,\mathrm{K} \,\mu_{\mathrm{eff}} \approx 33 \,\mu_{\mathrm{B}}$. Отклонения от закона Кюри-Вейсса наблюдали в LCMО при $T < 705 \,\mathrm{K}$ [4] и в LSMО при $T < 900 \,\mathrm{K}$ [1, 3]. В манганитах LaMnO_{3+ δ} с разным содержанием ионов Mn⁴⁺ температурные зависимости обратной восприимчивости также не являются линейными функциями вплоть до температур порядка $4T_{\rm C}$ [2]. Нелинейное поведение $\chi^{-1}(T)$ указывает на изменение эффективного магнитного момента. Оно связано с неоднородным парамагнитным состоянием [20, 26] (смесь изолированных ионов Mn и магнитных поляронов с повышенным магнитным моментом вблизи ионов Mn⁴⁺). При повышении температуры корреляция спинов в поляронах ослабевает и их магнитный момент уменьшается.

В ряде работ [14, 15, 27] особенности магнитных свойств выше Т_С в легированных манганитах (зависимость χ от магнитного поля, нелинейное поведение $\chi^{-1}(T)$, большие значения μ_{eff}) рассматривают как признаки фазы Гриффитса. В последнее время возникла полемика относительно причины особенностей парамагнитных свойств: связаны ли они с фазой Гриффитса или с присутствием магнитных поляронов [4, 28, 29]. Гриффитс рассмотрел неаналитическое поведение намагниченности $M = \chi H$ выше ферромагнитной температуры Кюри для случайно разбавленного изинговского ферромагнетика. Однако в 3D гейзенберговских легированных манганитах магнитное разбавление отсутствует, так как число магнитных ионов сохраняется, но изменяется спин части из них. При неоднородном распределении легирующих ионов признаки фазы Гриффитса могут проявляться в области температур ниже максимального значения T_C для данной системы. В своих сериях La_{1-x}A_xMnO₃ самые высокие значения температуры Кюри имеют образцы, содержащие $\approx 30\,\%$ ионов $\rm Mn^{4+}.~B$ этих составах температуры T_f и T_C должны совпадать, т.е. в парамагнитной области классическая фаза Гриффитса присутствовать не должна [15].

При анализе поведения магнитной восприимчивости для LCMO в широкой области температур, $T_{\rm C} < T < 700 \, {\rm K}$, авторы работы [4] полагают, что аномальные физические свойства, такие, как большой эффект отрицательного магнитосопротивления вблизи $T_{\rm C}$, эффект влияния давления на значение $T_{\rm C}$, могут быть связаны с фазой Гриффитса, однако при $T > 1.1 T_{\rm C}$ доминирующую роль играют магнитные поляроны. Магнитный переход при $T_{\rm C}$ явля-

Письма в ЖЭТ
Ф том 101 вып. 11–12 2015

ется фазовым переходом из ферромагнитного в поляронное состояние. Наблюдаемое поведение $\chi^{-1}(T)$ авторы [4] объясняют конкуренцией между парамагнетизмом изолированных ионов Mn и образованием магнитных димеров в орторомбической фазе. Отметим, что при ферромагнитном взаимодействии в димерах восприимчивость подчиняется закону Кюри: $\chi = C/(T - T_{\rm C})$ [30].

Нелинейные температурные зависимости обратной восприимчивости в легированных манганитах в области $T > 1.2T_{\rm C}$ указывают на изменения эффективного магнитного момента. Полагая, что вклад в $\mu_{\rm eff}$ дают как изолированные ионы Mn с постоянным магнитным моментом, так и поляроны с зависящим от температуры магнитным моментом, мы описали поведение $\chi^{-1}(T)$ в нестехиометрических манганитах LMO эмпирической формулой [2]

$$\chi^{-1}(T) = \frac{T - T_0}{C_\infty + B/T}.$$
(3)

Здесь значения T_0 должны быть близки к температурам Кюри ($T_{\rm C}$ или θ), C_{∞} – постоянная Кюри для изолированных ионов Mn при $T \to \infty$, член B/T отражает изменение эффективного магнитного момента поляронов.

В данной работе мы использовали выражение (3) для описания температурных зависимостей обратной восприимчивости в легированных манганитах $La_{0.7}A_{0.3}MnO_3$. Параметры T_0 , C_{∞} и B определялись путем подгонки к экспериментальным зависимостям $\chi^{-1}(T)$ (см. таблицу). Из рис. 2 видно, что расчетные зависимости хорошо описывают экспериментальные кривые $\chi^{-1}(T)$ для LMO, LCMO, LBMO. Вклад магнитных поляронов В положителен и значительно превышает значения C_{∞} . Расчетные значения T₀ близки к экспериментальным значениям $T_{\rm C}$. Учитывая вид кривых $\chi^{-1}(T)$, можно предположить, что в этих составах парамагнитная температура Кюри θ значительно выше $T_{\rm C}$. Разницу значений $\theta-T_{\rm C}\approx 100\,{\rm K}$ наблюдали в легированных Ca и Sr манганитах [1, 3, 4].

Небольшие различия между $T_{\rm C}$ и T_0 могут быть связаны с тем, что в экспериментальных значениях χ мы не учитывали малые по величине вклады. В общем виде магнитную восприимчивость можно представить как

$$\chi = C/(T - \theta) + \chi_{\text{core}} + \chi_{\text{VV}} + \chi_{\text{Pauli}}.$$
 (4)

Диамагнитный вклад замкнутых оболочек $\chi_{\rm core}$ обычно мал и не зависит от температуры. В исследованных образцах $\chi_{\rm core} = -(0.26 - 0.30) \cdot 10^{-6} \, {\rm \Gammac} \cdot {\rm cm}^3 / {\rm r}$

[3], что составляет менее 0.7% от экспериментальных значений $\chi = (1026-36.2) \cdot 10^{-6} \, \Gamma c \cdot cm^3/r$ при $T < 600 \, K$. Парамагнитный вклад Ван-Флека $\chi_{VV} = 0.22 \cdot 10^{-6} \, \Gamma c \cdot cm^3/r$ за счет возбужденных состояний также не зависит от температуры и сравним с χ_{core} . В первых трех образцах концентрация свободных носителей заряда мала. Поэтому членом χ_{Pauli} можно пренебречь. В LSMO число свободных носителей больше, т.к. состав имеет металлический характер проводимости. Однако авторы [3] на основе данных по $\chi^{-1}(T)$ в области $T > 700 \, K$, в которой выполняется закон Кюри–Вейса с теоретической величиной $\mu_{\rm eff}$, делают вывод о том, что для La_{1-x}Sr_xMnO₃ при $x \leq 0.35$ вклад $\chi_{\rm Pauli}$ можно не учитывать.

В настоящее время предложены две модели образования магнитных поляронов в манганитах: за счет сверхобмена $Mn^{4+}-Mn^{3+}$ [31] и двойного обмена при делокализации e_g -электронов [32]. В модели Варма [31]:

$$\chi \propto (T - T_{\rm C})^{-1},\tag{5}$$

электронные прыжки осуществляются только между ближайшими разновалентными ионами М
п. При $T > T_{\rm C}$ такая ситуация может реализоваться в LMO, LCMO и LBMO. При концентрации x ионов Mn⁴⁺ эффективный магнитный момент неоднородной системы определяется выражением

$$\mu_{\text{eff}}^2 = [x(S_1 + PS_2)(S_1 + PS_2 + 1) + (1 - x - Px)S_2(S_2 + 1)]g^2\mu_{\text{B}}^2.$$
(6)

Здесь 0 $\leq P \leq 6$ – число ближайших к ${\rm Mn}^{4+}$ поляризованных спинов ионов Mn^{3+} , $S_1 = 3/2$ (Mn^{4+}), $S_2 = 2$ (Mn³⁺), $S_1 + PS_2$ – спин полярона. Такие поляроны могут иметь размер удвоенной элементарной ячейки. Оценки μ_{eff} по модели Варма для $La_{0.7}A_{0.3}MnO_3$ дают значения $\mu_{eff} = 5.34\mu_B$ при P = 1 и $\mu_{\text{eff}} = 14.44 \mu_{\text{B}}$ при P = 6. Отметим, что не все ионы Mn^{4+} поляризуют ближайшие ионы Mn^{3+} . При больших концентрациях x в одном поляроне могут оказаться два и более иона Mn⁴⁺. Если антиферромагнитное взаимодействие Mn⁴⁺-Mn⁴⁺ превысит ферромагнитный обмен в поляроне, то вклад таких поляронов в восприимчивость исчезнет [26]. Наблюдаемый нелинейный вид $\chi^{-1}(T)$ и высокие значения $\mu_{\rm eff}$ указывают на присутствие в области $T < 650 \, {\rm K}$ парамагнитных поляронов Варма.

Несколько другая ситуация наблюдается в проводящем $La_{0.7}Sr_{0.3}MnO_3$. Температурная зависимость обратной восприимчивости также имеет нелинейный вид. Подбирая значения T_0 , C_{∞} и B, можно описать экспериментальную кривую в области $T=(450-600)\,{\rm K}$ формулой (3). Однако при этом получаются очень большие отрицательные значения параметра B. Такие расчеты были проведены для $T_0=(350-380)\,{\rm K}$. Магнитный момент поляронов не может иметь отрицательное значение. К тому же экспериментальные значения магнитного момента в области 360–650 K существенно выше величины $\mu_{\rm eff}=14.44\mu_{\rm B}$ при x=0.3 и P=6 для системы, состоящей из парамагнитных ионов Mn и поляронов Варма. По-видимому, к LSMO модель Варма неприменима.

Изучение нейтронного рассеяния в LSMO показало, что энергия спиновых волн значительно выше $T_{\rm C}$ [19]. Магнитные поляроны состоят из большого числа упорядоченных спинов. Как уже отмечалось, LSMO в парамагнитной области сохраняет металлический характер проводимости, так как энергия переноса e_g -электронов в d-зоне велика. Вблизи температуры Кюри критические параметры для намагниченности и восприимчивости при $T < T_{\rm C}$ и $T > T_{\rm C}$ отличаются друг от друга. Можно предположить, что в LSMO неоднородное магнитное состояние выше $T_{\rm C}$ представляет собой внедренные в парамагнитную матрицу ферромагнитные поляроны, в которых магнитный порядок обусловлен двойным обменом [3, 19, 20, 24].

Образование коррелированных поляронов в манганитах при переносе e_g -электронов ионов Mn³⁺ через кислород рассмотрели Ванг и Фриман [32]. Критериями образования ферромагнитных поляронов были выбраны минимизация размера упорядоченных областей для понижения энергии по сравнению с однородным парамагнитным состоянием и отсутствие перекрытия поляронов. При понижении Tразмер спиновых поляронов увеличивается. Поэтому восприимчивость изменяется по закону

$$\chi \propto T^{-3/5} (T - T_{\rm C})^{-1}.$$
 (7)

В области высоких температур, $kT \approx zJ$ (где z – число взаимодействующих спинов, J – обменный параметр в поляроне), размер спиновых поляронов перестает изменяться и восприимчивость системы следует закону Кюри–Вейсса. Авторы не представили аналитический вид температурной зависимости восприимчивости для такой магнитной системы. Наши попытки использовать аналогичное формуле (3) выражение

$$\chi = (C_{\infty} + BT^{-3/5})/(T - T_0) \tag{8}$$

оказались безуспешными. Как и при использовании формулы (3), описание поведения $\chi^{-1}(T)$ в LSMO также дает отрицательное значение параметра B, а

Письма в ЖЭТФ том 101 вып. 11-12 2015

значения T_0 сильно отличаются от $T_{\rm C}$. По-видимому, в LSMO зависимость $\chi^{-1}(T)$ имеет более сложный вид. Вблизи $T_{\rm C}$ наблюдается плавный переход из однородного ферромагнитного состояния в неоднородное поляронное. В области $T_{\rm C} > T > 650$ К могут сосуществовать ферромагнитные (аналог ближнего порядка) и парамагнитные поляроны. При дальнейшем повышении температуры вплоть до 900 К сохраняются только парамагнитные ионы Варма.

Таким образом, проведенные исследования магнитных свойств содержащих 30 % ионов Mn⁴⁺ манганитов La_{1-x}A_xMnO₃ показали, что парамагнитное состояние в области $T_{\rm C} < T < 650\,{\rm K}$ является неоднородным. В манганитах LMO, LCMO и LBMO, имеющих полупроводниковый характер проводимости при $T > T_{\rm C}$, температурная зависимость обратной восприимчивости имеет нелинейный характер и описывается законом Кюри с зависящим от температуры эффективным магнитным моментом. Магнитные поляроны в них образуются за счет сверхобмена между ближайшими соседями Mn³⁺-O²⁻-Mn⁴⁺. В этих составах наблюдается корреляция между объемом решетки и магнитным моментом парамагнитных поляронов. Меньшую величину параметра В имеет образец LBMO с большим объемом элементарной ячейки. При этом симметрия кристаллической решетки (орторомбическая или ромбоэдрическая) не оказывает существенного влияния на магнитный момент поляронов. Мы описали экспериментальные зависимости $\chi^{-1}(T)$ в далекой парамагнитной области для манганитов с полупроводниковым характером проводимости эмпирической формулой, из которой можно определить значение $T_{\rm C}$.

В проводящем La_{0.7}Sr_{0.3}MnO₃ температуру Кюри $T_{\rm C}$ можно представить как температуру перехода от дальнего ферромагнитного порядка в поляронное состояние. Выше $T_{\rm C}$ присутствуют ферромагнитные поляроны (аналог ближнего магнитного порядка), парамагнитные поляроны с повышенным значением $\mu_{\rm eff}$ и изолированные ионы Mn. Наличие магнитных поляронов в далекой парамагнитной области ($T > 2T_{\rm C}$) является характерной чертой классических магнитных полупроводников.

Авторы признательны Н.Г. Бебенину за обсуждение результатов. Работа выполнена в рамках государственного задания ФАНО России (тема "Спин", #01201463330) при частичной поддержке программы УрО РАН (проект #15-9-2-4).

 M. T. Causa, M. Tovar, A. Caneiro, F. Prado, G. Ibanez, C.A. Ramos, A. Butera, B. Alascio, X. Obradors, S. Pinol, F. Rivadulla, C. Vazquez-

Письма в ЖЭТФ том 101 вып. 11-12 2015

Vazquez, M.A. Lopez-Quintela, J. Rivas, Y. Tokura, and S.B. Oseroff, Phys. Rev. B 58, 3233 (1998).

- Т.И. Арбузова, С.В. Наумов, Н.Г. Бебенин, Письма в ЖЭТФ 98, 88 (2013).
- J. A. Souza, J. J. Neumeier, R. K. Bollinger, B. McGuire, C. A. M. dos Santos, and H. Terashita, Phys. Rev. B 76, 024407 (2007).
- J. A. Souza, J. J. Neumeier, and Y.-K. Yu, Phys. Rev. B 78, 014436 (2008).
- Д. Гуденаф, Магнетизм и химическая связь, под ред. Б.Е. Левина, С.С. Горелика, Металлургия, М. (1968), с. 328.
- P. S. I. P. N. de Silva, F. M. Richards, L. F. Cohen, J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, K. A. Thomas, and J. L. MacManus-Driscoll, J. Appl. Phys. 83, 394 (1998).
- 7. N.G. Bebenin, J. Mag. Mag. Mat. **324**, 3593 (2012).
- J. M. D. Coey, M. Viret, L. Ranno, and K. Ounadjela, Phys. Rev. Lett. **75**, 3910 (1995).
- A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
- 10. B.K. Banerjee, Phys. Lett. 12, 16 (1964).
- 11. Н. Г. Бебенин, ФММ **111**, 242 (2011).
- J. Mira, J. Rivas, F. Rivadulla, C. Vázquez-Vázquez, and M. A. López-Quintela, Phys. Rev. B 60, 2998 (1999).
- F. Rivadulla, J. Rivas, and J.B. Goodenough, Phys. Rev. B 70, 172410 (2004).
- M. B. Salamon and S. H. Chun, Phys. Rev. B 77 064424 (2008).
- W. Jiang, X. Zh. Zhou, G. Williams, Y. Mukovskii, and K. Glazyrin, Phys. Rev. B 77, 064424 (2008).
- J. W. Lynn, D. N. Argyriou, Y. Ren, Y. Chen, Y. M. Mukovskii, and D. A. Shulyatev, Phys. Rev. B 76, 014437 (2007).
- S.E. Lofland, P. Kim, P. Dahiroc, S.M. Bhagat, S.D. Tyagi, S.G. Karabashev, D.A. Shulyatev, A.A. Arsenov, and Y. Mukovskii, Phys. Lett. A 233, 476 (1997).
- И.В. Яцык, Р.М. Еремина, М.М. Шакирзянов, Я.М. Муковский, Х.А. Круг фон Нидда, А. Лоидл, Письма в ЖЭТФ 87, 517 (2008).
- M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo, and Y. Tokura, Phys. Rev. B 53, 14285 (1996).
- 20. E. Dagotto, J. Phys. 7, 67 (2005).
- 21. Дж. Смарт, Эффективное поле в теории магнетизма, под ред. С. В. Тябликова, Мир, М. (1968).
- K. Ghosh, C.J. Lobb, and R.L. Greene, Phys. Rev. Lett. 81, 4740 (1998).
- P. Zhang, P. Lampen, T. L. Phan, S. C. Yu, T. D. Thanh, N. H. Dan, V. D. Lam, H. Srikanth, and M. H. Phan, J. Mag. Mag. Mat. **348**, 146 (2013).

- M. Kalita, A.F. Lozenko, and S. Ryabchenko, Ukr. J. Phys. 54, 157 (2009).
- A. I. Shames, M. Auslender, and E. Rozenberg, J. Phys. D: Appl. Phys. 42, 245002 (2009).
- З. Метфессель, Д. Маттис, Магнитные полупроводники, под ред. С.В. Вонсовского, Мир, М. (1972), с. 323.
- 27. J. Deisenhofer, D. Braak, H.-A. Krug von Nidda, J. Hemberger, R. M. Eremina, V. A. Ivanshin,

A. M. Balbashov, G. Jug, A. Loidl, T. Kimura, and Y. Tokura, Phys. Rev. Lett. **95**, 257202 (2005).

- 28. E. Rozenberg, J. Alloys Comp. 602, 40 (2014).
- A.N. Ulyanov, N.E. Pismenova, D.S. Yang, and G.G. Levchenko, J. Alloys Comp. 618, 607 (2015).
- 30. Р. Л. Карлин, Магнетохимия, Мир, М. (1989), с. 399.
- 31. M. Varma, Phys. Rev. B 54, 7328 (1996).
- 32. X. Wang and A. J. Freeman, J. Mag. Mag. Mat. 171, 103 (1997).