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We study theoretically the properties of SIFS type Josephson junctions composed of two superconducting

(S) electrodes separated by an insulating layer (I) and a ferromagnetic (F) film consisting of periodic magnetic

domains structure with antiparallel magnetization directions in neighboring domains. The two-dimensional

problem in the weak link area is solved analytically in the framework of the linearized quasiclassical Usadel

equations. Based on this solution, the spatial distributions of the critical current density, JC , in the domains

and critical current, IC , of SIFS structures are calculated as a function of domain wall parameters, as well as

the thickness, dF , and the width, W, of the domains. We demonstrate that IC(dF ,W ) dependencies exhibit

damped oscillations with the ratio of the decay length, ξ1, and oscillation period, ξ2, being a function of the

parameters of the domains, and this ratio may take any value from zero to unity. Thus, we propose a new

physical mechanism that may explain the essential difference between ξ1 and ξ2 observed experimentally in

various types of SFS Josephson junctions.
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It is well known that properties of Josephson struc-

tures with ferromagnetic (F) material in a weak link

region depends on relation between the complex decay

length, ξ (ξ−1 = ξ−1
1 +iξ−1

2 ) and geometrical parameters

of these junctions [1–3]. If F metal is in the dirty limit

and exchange energy, H , sufficiently exceeds the criti-

cal temperature of superconducting (S) electrodes, πTC ,

then from Usadel equations it follows that ξ1 ≈ ξ2. How-

ever, it was demonstrated experimentally [4–12] that

there could be a noticeable difference between ξ1 and

ξ2. Previously the difference has been attributed either

to the presence of strong paramagnetic scattering in the

F layer [7], or to violation of the dirty limit conditions in

ferromagnetic material [12, 13]. However, application of

the first of the mechanisms for the experimental data

interpretation requires the existence of unreasonably

strong paramagnetic scattering in the weak link mate-

rial [7]. The relation between an electron mean free, ℓ,

and ξ1, ξ2 in typical experimental situation is also closer

1)e-mail: mkupr@pn.sinp.msu.ru

to the dirty limit conditions, ℓ . ξ1, ξ2 rather than to

the clean one.

In this article we prove that the existence of a fer-

romagnetic domain walls in F layer can also lead to ap-

pearance of substantial differences between ξ1 and ξ2
even in the absence of strong scattering by paramag-

netic impurities, and under the fulfilment of the dirty

limit conditions in the F material.

Model. Consider multilayered SIFS structure pre-

sented in Fig. 1. It consists of superconductor electrode

(S), insulator (I), and FS bilayer as an upper electrode.

We assume that the F film has a thickness, dF , and

that it subdivides into domain structure with antiparal-

lel direction of magnetization vector in the neighboring

domains. The width of the domains is W and they sep-

arated by atomically sharp domain walls oriented per-

pendicular to SF interfaces. Due to periodicity of the

structures we, without any loss of generality, can per-

form our analysis within its half of the period, that is

from −W/2 to W/2. This element is enlarged in Fig. 1.

It consists of two halves of domains and domain wall

separating them.
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Fig. 1. Geometry of the considered SIFS Josephson junc-

tion and its enlarged part, which includes two halves of

domains and domain wall separating them. The insulat-

ing barrier I has a small transparency (shown by a blue

line)

We will suppose that the condition of dirty limit is

fulfilled for all metals and that effective electron-phonon

coupling constant is zero in F material. We will assume

further that either temperature T is close to the crit-

ical temperature of superconducting electrodes TC or

the suppression parameters γBS = RBSABN/ρF ξF at

SF interface is large enough to permit the use of the lin-

earized Usadel equations in F film of the structure. We

will characterize the FF interface (domain wall) by the

suppression parameter γ = 1, and the suppression pa-

rameter γBF = RBFABF /ρF ξF , which can take any

value. Here RBS , RBF and ABN ,ABF are the resis-

tances and areas of the SF and FF interfaces, ξS , and

ξF = (DF /2πTC)
1/2 are the decay lengths of S, F ma-

terials, while ρS and ρF are their resistivities, DF is

diffusion coefficient in the F metal.

Under the above conditions the proximity problem

in the SF part of SIFS junction (0 ≤ x ≤ dF ) reduces

to solution of the set of linearized Usadel equations [1–

3, 14]

{
∂2

∂x2
+

∂2

∂y2

}
FF − Ω̃+FF = 0, 0 ≤ y ≤ W

2
, (1)

{
∂2

∂x2
+

∂2

∂y2

}
FF − Ω̃−FF = 0, −W

2
≤ y ≤ 0, (2)

where Ω = ω/πTC , Ω̃± = |Ω| ± ihsgn(ω), h = H/πTC ,

H is exchange energy of ferromagnetic material, ω =

= πT (2n + 1) are Matsubara frequencies. The spatial

coordinates in (1), (2) are normalized on decay length

ξF . To write these equations we have chosen the x and y

axis in the directions perpendicular and parallel to the

SF plane and put the origin in the middle of SF inter-

face to the point, which belongs to the domain wall (see

Fig. 1).

Eqs. (1), (2) must be supplemented by the boundary

conditions [15]. They have the form

γBS
∂

∂x
FF = −G0

∆

ω
, x = 0, −W

2
≤ y ≤ W

2
,

∂

∂x
FF = 0, x = dF , −W

2
≤ y ≤ W

2
. (3)

At FF interface (y = 0, 0 ≤ x ≤ dF ) and in the middle

of the domains (y = ±W/2, 0 ≤ x ≤ dF ) we also have

γBF
∂

∂y
FF (x,+0) = FF (x,+0)− FF (x,−0), (4)

∂

∂y
FF (x,+0) =

∂

∂y
FF (x,−0),

∂

∂y
FF (x,W/2) =

∂

∂y
FF (x,−W/2) = 0. (5)

Here W is the width of the domains, G0 = ω/
√
ω2 +∆2,

∆ is the modulus of the order parameter of supercon-

ducting electrodes. The critical current density, JC , of

SIFS Josephson junction is determined by s-wave su-

perconducting correlations at IF interface, which is even

function of the Matsubara frequencies

eJCRN

2πTC
=

T

WTC

∑

ω>0

G0∆

ω
Φ(y), (6)

where Φ(y) = [FF,+ω(dF , y)+FF,−ω(dF , y)]/2, while the

full critical current, IC , is the result of integration of

JC(y) over width of the junction.

eICRN

2πTC
=

T

WTC

∑

ω>0

G0∆

ω

∫ W/2

−W/2

Φ(y)dy. (7)

Here, RN is the normal junction resistance.

Solution of Usadel equations in FS electrode.

Solution of two-dimensional boundary value problem

(1)–(5) in the F layer (0 ≤ x ≤ dF ) is convenient to

find in the form of the Fourier series expansion

FF (x, y) =

∞∑

n=−∞

An(y) cos
πnx

dF
, 0 ≤ y ≤ W

2
, (8)

FF =

∞∑

n=−∞

Bn(y) cos
πnx

dF
, −W

2
≤ y ≤ 0, (9)

where

An(y) =
Z

q2+
+ an cosh

[
q+

(
y − W

2

)]
, (10)

Bn(y) =
Z

q2−
+ bn cosh

[
q−

(
y +

W

2

)]
, (11)
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and coefficients an and bn

an = −
[
1

q2+
− 1

q2−

]
Zq−S−

δ
, q± =

√

Ω̃± +

(
πn

dF

)2

,

(12)

bn =

[
1

q2+
− 1

q2−

]
Zq+S+

δ
, Z =

∆G0

γBSdFω
(13)

are determined from boundary conditions (4). Here the

coefficients δ, C±, and S± are defined by expressions

δ = q−q+γBFS+S− + q−C+S− + q+S+C−, (14)

C± = cosh

(
q±W

2

)
, S± = sinh

(
q±W

2

)
. (15)

Taking into account the symmetry relation q−(−ω) =

= q+(ω) for s-wave superconducting component in the

F layer at x = dF it is easy to get

Φ(y ≥ 0)=
Z

2

∞∑

n=−∞

(−1)n
[
1

q2+
+

1

q2−
−
[
1

q2+
− 1

q2−

]
δ+
δ

]
,

(16)

Φ(y ≤ 0)=
Z

2

∞∑

n=−∞

(−1)n
[
1

q2+
+

1

q2−
−
[
1

q2+
− 1

q2−

]
δ−
δ

]
,

(17)

δ±=q−S− cosh

(
q+

2y ∓W

2

)
−q+S+ cosh

(
q−

2y ∓W

2

)
.

Finally for the critical current from (7), (16), and

(17) we have

eICRN

2πTC
=

T

2WTC

∑

ω>0

ZG0∆

ω
S(ω), (18)

S(ω) =

∞∑

n=−∞

(−1)n
[
W

q2+
+

W

q2−
− 2S−S+(q

2
− − q2+)

2

δq3+q
3
−

]
.

It is seen that the critical current can be represented

as the sum of two terms. The first is the contributions

from individual domains separated by fully opaque FF

wall

eIC1RN

2πTC
=

T

TC

∑

ω>0

G2
0∆

2

γBSω2
Re

1
√
Ω̃+ sinh

(
dF

√
Ω̃+

) ,

(19)

while the second

eIC2RN

2πTC
=

4h2T

WdFTC

∑

ω>0

G2
0∆

2

γBSω2

∞∑

n=−∞

(−1)nS−S+

q3+q
3
−δ

(20)

gives the contribution from the domain wall. Here Re(a)

denotes the real part of a.

Expression (19) reproduces the well-known result

previously obtained for single-domain SIFS structures

[16–18] thereby demonstrating the independence of the

critical current on the orientation of the domains mag-

netization vectors, if they are collinear oriented and the

FF interface is fully opaque for electrons.

Limit of large γBF . For large values of suppression

parameter γBF ≫ max
{
1, (Wq±)

−1
}

expression (20)

transforms to

eIC2RN

2πTC
=

4h2T

WdFTC

∑

ω>0

G2
0∆

2

γBF γBSω2

∞∑

n=−∞

(−1)n

q4+q
4
−

.

(21)

The sum over n in Eq. (21) can be calculated analyti-

cally using the theory of residues

eIC2RN

2πTC
=

2hT

WTC

∑

ω>0

G2
0∆

2

γBF γBSω2
S1, (22)

S1=Re






i

Ω̃
3/2
+




1

cosh

(
dF

√
Ω̃+

) +
dF

√
Ω̃+

sinh

(
dF

√
Ω̃+

)








.

It is seen that IC2 is vanished as (γBFW )−1 with

increase of γBFW product and scales on the same char-

acteristic lengths ξ1, ξ2 as the critical current for single-

domain SIFS structures (19).

Limit of small γBF . In the opposite limit, γBF ≪
≪ max

{
1, (Wq±)

−1
}
, we have

eIC2RN

2πTC
=

8h2T

WdFTC

∑

ω>0

G2
0∆

2

γBSω2
S2, (23)

S2 =

∞∑

n=−∞

(−1)nS−S+

q3+q
3
− (q−C+S− + q+S+C−)

.

It is seen that in full agreement with the result ob-

tained in [19] in the considered limit of large domain

width, W ≫ Re(q±),

eIC2RN

2πTC
=

4h2T

WdFTC

∑

ω>0

G2
0∆

2

γBSω2

∞∑

n=−∞

(−1)n

q3+q
3
− (q− + q+)

(24)

contribution to the critical current from domain wall

region falls as W−1 and decays in the scale of ξ1.

Limit of small domain width. In the opposite

case, W ≪ Re(q±), presentation of the critical current

as a sum of IC1 and IC2 is not physically reasonable and

for IC from (18) we get

eICRN

2πTC
=

T

2TC

∑

ω>0

G2
0∆

2

γBSdFω2
S3, (25)

S3 =

∞∑

n=−∞

(−1)n

[ (
q2− + q2+

)
γBW + 4(

q2−q
2
+γBW + q2− + q2+

)
]
,
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where γBW = γBFW/2. It is seen that for γBW ≫ 1 ex-

pression (25) transforms to (19) and IC = IC1, while in

the limit γBW → 0 from (25) it follows that the critical

current

eICRN

2πTC
=

T

TC

∑

ω>0

G2
0∆

2

γBSω2
√
Ωsinh

(
dF

√
Ω
) (26)

is independent on exchange energy and falls with in-

crease of dF in the same scale as it is for SINS devices.

Previously it was found that such transformation of de-

cay length takes place in a vicinity of domain wall [20–

33]. In particular, it was shown that if a sharp domain

wall is parallel [22, 24] or perpendicular to SF inter-

face [33–35] and the thickness of ferromagnetic layers,

df . ξF , then for antiparallel direction of magnetization

the exchange field effectively averages out, and the decay

length of superconducting correlations becomes close to

that of a single nonmagnetic N metal ξF =
√
DF /2πTC .

The same effect may also take place in S–FNF–S vari-

able thickness bridges [34, 35].

For arbitrary values of γBW the sum over n in (25)

can be also calculated analytically. The denominator in

(25) has the poles at

n = ±i
dF
π

√

Ω +
1±

√
1− γ2

BWh2

γBW
.

Application of the residue theorem to the summation of

the series in n in the expression (25) leads to

eICRN

2πTC
=

T

2TC

∑

ω>0

G2
0∆

2

γBSω2

γBM√
1− γ2

BMh2
S4, (27)

S4=
q√

Ω+p sinh(dF
√
Ω + p)

− p√
Ω+q sinh(dF

√
Ω+ q)

,

p =
1−

√
1− γ2

BWh2

γBW
, q =

1 +
√
1− γ2

BWh2

γBW
. (28)

It is seen that for γBWh ≤ 1 s-wave superconducting

correlations decay exponentially into the F metal with-

out any oscillations with two characteristic scales, ξ11 =

= ξF (Ω+p)−1/2, and, ξ12 = ξF (Ω+q)−1/2. If γBW tends

to zero then one of the damping characteristic scale ξ11
goes to that ξFΩ

−1/2 of SINF junctions (see (26)), while

the other ξ12 goes to zero. With γBW increase ξ11 re-

duces, whereas ξ12 increases, so that at γBWh = 1 they

become equal to each other ξ11 = ξ12 = ξF (Ω + h)
−1/2

.

Further increase of γBWh leads to appearance of the

damped oscillations in IC(dF ) dependence with the ra-

tio

ξ1
ξ2

=

√
γ2
BWh2 − 1√

(γBWΩ+ 1)2 + γ2
BWh2 − 1 + ΩγBW + 1

,

(29)

which monotonically increases from zero at γBWh = 1

up to that of single domain SIFS junctions

ξ1
ξ2

=
h√

Ω2 + h2 +Ω
, (30)

in the limit γBW → ∞.

From (29), (30) we can conclude that the existence

of domain structure in the F layer of SIFS devices can

significantly modify the relation between ξ1 and ξ2 ex-

tracted from experimental studies of IC(dF ) dependence

in SIFS tunnel junctions.

This conclusion is valid not only in the limit of small

domain width.

Arbitrary values of the domain width. For ar-

bitrary values of the width of the magnetic domains

to calculate the dependence of IC(dF ) is necessary to

use the general expression (18). Fig. 2 gives the IC(dF )

Fig. 2. Dependence of the critical current of SIFS Joseph-

son junction as a function of thickness of F layer dF calcu-

lated numerically from (18) for T = 0.5TC , H = 10πTC ,

γBF = 0 and for a set of widths W/ξF = 0.3; 0.5; 0.7; 0.8;

1; 1.2

curves calculated for H = 10πTC , γBF = 0 and for a

set of widths W/ξF . It is seen that in full accordance

with the analytical analysis given above for W smaller

than 0.78ξF , IC falls monotonically with W increase. At

W & 0.78 there is a transformation from a monotonic

dependence of IC(dF ) to a damped oscillatory one. It is

interesting to note that in the vicinity of the transition

the critical current decays even faster than for large W.

To illustrate this result, we make a fit of the calculated

curves by the simple expression

IC(dF ) = A exp(−dF /ξ1) cos(dF /ξ2 + ϕ),
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which is ordinary used for estimation of the decay

lengths ξ1 and ξ2 from an experimental data [38, 39].

At the first step we define ξ2

ξ2 = (dF2 − dF1)/π

from the positions of the first, dF1, and the second, dF2,

0–π transitions in IC(dF ) dependence and put

ϕ = π/2− dF1/ξ2

in order to get IC(dF1) = 0. The decay length ξ1 is de-

termined from the ratio of magnitudes of critical current

taken in two points having equal phase of oscillation:

ξ1 = πξ2 ln

[
IC(dF1 + ξ2π/2)

IC(dF2 + ξ2π/2)

]

and normalization constant A

A =
IC(dF1 + ξ2π/2)

exp(−dF /ξ1) cos(dF /ξ2 + ϕ)

has been determined by direct calculation of magnitude

in the certain point between 0–π transitions. If the posi-

tion of the second 0–π transition exceeds 10ξF , we sup-

pose that ξ2 is infinite and IC(dF1) dependence can be

fitted by function

JC(dF ) = A exp(−dF /ξ1).

The results of the fitting procedure are presented in

Figs. 3–5, which give the decay lengths ξ1 and ξ2 as well

Fig. 3. Dependence of decay length ξ1 as a function of do-

main width W calculated at T = 0.5TC , H = 10πTC , and

γBF = 0; 0.3; 1

as their ratio ξ1/ξ2 calculated at T = 0.5TC , H = 10πTC

for a set of suppression parameter γBF = 0; 0.3; 1. Thin

vertical lines in Figs. 3 and 4 give values on the x-axis,

Fig. 4. Dependence of decay length ξ2 as a function of do-

main width W calculated at T = 0.5TC , H = 10πTC , and

γBF = 0; 0.3; 1

Fig. 5. The ratio of decay lengths ξ1 and ξ2 as a function

of domain width W calculated at T = 0.5TC , H = 10πTC ,

and γBF = 0; 0.3; 1

at which there is a transition from a monotonous expo-

nential decay of IC(dF ) to the damped oscillation lows.

Thin horizontal lines in Figs. 3–5 provide the asymptotic

values of ξ1, ξ2, and ξ1/ξ2 in the limit W ≫ ξF , which

are coincide with the magnitudes calculated for single

domain SIFS junction for given temperature T = 0.5TC

and exchange energy H = 10πTC .

It is seen that the transition point at which mono-

tonic decay of IC(dF1) dependence transforms to a

damped oscillation behavior the smaller the larger is

suppression parameter γBF . Interestingly, in the vicinity

of this transition decay length ξ1 is even smaller com-

pare to its magnitude in the limit of large W.

It is also necessary to note that despite of the fact

that the transition takes place at W < ξF , the differ-

ence between ξ1 and ξ2, as it follows from Fig. 5, ex-
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ists even for large domain width: the ratio ξ1/ξ2 is only

around 0.8 at W = 4ξF and very slowly tends to the

following from (30) the single domain value 0.95 with

W increase. This fact permits us to conclude that the

difference between ξ1 and ξ2 experimentally observed in

SFS Josephson structures based on dilute magnetic al-

loys can be also the consequence of existence of magnetic

domains in the F layer.

This work was supported by RFBR grants # l4-

02-90018-bel_a, 14-02-31002-mol_a, 15-32-20362-

mol_a_ved, Ministry of Education and Science of

the Russian Federation in the frameworks of Grant

# 14.587.21.0006 (RFMEFI58714X0006), and the

Program for the Promotion of Competitiveness of the

Kazan Federal University among the World-Leading

Scientific Educational Centers, Russian President grant

# MK-1841.2014.2, Dynasty Foundation, Scholarship

of the President of the Russian Federation and Dutch

FOM. A.A. Golubov also acknowledge EU COST

program MP1201.

1. A.A. Golubov, M. Yu. Kupriyanov, and E. Il’ichev, Rev.

Mod. Phys. 76, 411 (2004).

2. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

3. F. S. Bergeret, A. F. Volkov, and K.B. Efetov, Rev.

Mod. Phys. 77, 1321 (2005).

4. T. Kontos, M. Aprili, J. Lesueur, F. Genet, B. Stephani-

dis, and R. Boursier, Phys. Rev. Lett. 89, 137007 (2002).

5. C. Bell, R. Loloee, G. Burnell, and M.G. Blamire, Phys.

Rev. B 71, 180501 (R) (2005).

6. V. Shelukhin, A. Tsukernik, M. Karpovski, Y. Blum,

K.B. Efetov, A. F. Volkov, T. Champel, M. Eschrig,

T. Lofwander, G. Schon, and A. Palevski, Phys. Rev.

B 73, 174506 (2006).

7. V.A. Oboznov, V.V. Bol’ginov, A.K. Feofanov,

V.V. Ryazanov, and A. Buzdin, Phys. Rev. Lett. 96,

197003 (2006).

8. J. W.A. Robinson, S. Piano, G. Burnell, C. Bell, and

M. G. Blamire, Phys. Rev. Lett. 97, 177003 (2006).

9. A.A. Bannykh, J. Pfeiffer, V. S. Stolyarov, I. E. Ba-

tov, V.V. Ryazanov, and M. Weides, Phys. Rev. B 79,

054501 (2009).

10. F. Born, M. Siegel, E.K. Hollmann, H. Braak, A.A. Gol-

ubov, D.Yu. Gusakova, and M. Yu. Kupriyanov, Phys.

Rev. B 74, 140501 (2006).

11. J. W.A. Robinson, F. Chiodi, M. Egilmez, G.B. Halasz,

and M.G. Blamire, Sci. Rep. 2, 00699 (2012).

12. Y. Blum, A. Tsukernik, M. Karpovski, and A. Palevski,

Phys. Rev. B 70, 214501 (2004).

13. N.G. Pugach, M. Yu. Kupriyanov, E. Goldobin,

R. Kleiner, and D. Koelle, Phys. Rev. B 84, 144513

(2011).

14. K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970).

15. M.Yu. Kuprianov and V.F. Lukichev, ZhETF 94, 139

(1988) [Sov. Phys. JETP 67, 1163 (1988)].

16. A. Buzdin and I. Baladie, Phys. Rev. B 67, 184519

(2003).

17. M. Faure, A. I. Buzdin, A.A. Golubov, and

M.Yu. Kupriyanov, Phys. Rev. B 73, 064505 (2006).

18. A. S. Vasenko, A.A. Golubov, M.Yu. Kupriyanov, and

M. Weides, Phys. Rev. B 77, 134507 (2008).

19. A. I. Buzdin, A. S. Mel’nikov, and N.G. Pugach, Phys.

Rev. B 83, 144515 (2011).

20. N.M. Chtchelkatchev and I. S. Burmistrov, Phys. Rev.

B 68, 140501(R) (2003).

21. M. Houzet and A. I. Buzdin, Phys. Rev. B 74, 214507

(2006).

22. M.A. Maleki and M. Zareyan, Phys. Rev. B 74, 144512

(2006).

23. I. S. Burmistrov and N.M. Chtchelkatchev, Phys. Rev.

B 72, 144520 (2005).

24. A.F. Volkov and K.B. Efetov, Phys Rev B 78, 024519

(2008).

25. I. I. Soloviev, N.V. Klenov, S.V. Bakursky,

M.Yu. Kupriyanov, and A.A. Golubov, Pis’ma v

ZhETF 101, 258 (2015) [JETP Lett. 101, 240 (2015)].

26. B. Crouzy, S. Tollis, and D.A. Ivanov, Phys. Rev. B 75,

054503 (2007).

27. I. B. Sperstad, J. Linder, and A. Sudbo, Phys. Rev. B

78, 104509 (2008).

28. J. Linder and K. Halterman, Phys. Rev. B 90, 104502

(2014).

29. T. Baker, A. Richie-Halford, and A. Bill, New J. Phys.

16, 093048 (2014).

30. Ya.M. Blanter and F. W. J. Hekking, Phys. Rev. B 69,

024525 (2004).

31. T. Champel and M. Eschrig, Phys. Rev. B 72, 054523

(2005).

32. Ya.V. Fominov, A. F. Volkov, and K.B. Efetov, Phys.

Rev. B 75, 104509 (2007).

33. B. Crouzy, S. Tollis, and D.A. Ivanov, Phys. Rev. B 76,

134502 (2007).

34. M. Alidoust and K. Halterman, Appl. Phys. Lett. 105,

202601 (2014).

35. M. Alidoust and K. Halterman, J. Appl. Phys. 117,

123906 (2015).

36. T.Yu. Karminskaya and M. Yu. Kupriyanov, Pis’ma v

ZETF 85, 343 (2007) [JETP Lett. 86, 61 (2007)].

37. T.Yu. Karminskaya, A.A. Golubov, M.Yu. Kup-

riyanov, and A. S. Sidorenko, Phys. Rev. B 79, 214509

(2009).

38. A. I. Buzdin and M.Yu. Kupriyanov, Pis’ma v ZhETF

53, 308 (1991) [JETP Lett. 53, 321 (1991)].

39. A. I. Buzdin and V.V. Ryazanov, Physica C 460, 238

(2007).

Письма в ЖЭТФ том 101 вып. 11 – 12 2015


