Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-121
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 101 (2015) | ISSUE 12 | PAGE 913
Evidence on the macroscopic length scale spin coherence for the edge currents in a narrow HgTe quantum well
Abstract
We experimentally investigate spin-polarized electron transport between two ferromagnetic contacts, placed at the edge of a two-dimensional electron system with band inversion. The system is realized in a narrow (8 nm) HgTe quantum well, the ferromagnetic side contacts are formed from a pre-magnetized permalloy film. In zero magnetic field, we find a significant edge current contribution to the transport between two ferromagnetic contacts. We experimentally demonstrate that this transport is sensitive to the mutual orientation of the magnetization directions of two 200 μm-spaced ferromagnetic leads. This is a direct experimental evidence on the spin-coherent edge transport over the macroscopic distances. Thus, the spin is extremely robust at the edge of a two-dimensional electron system with band inversion, confirming the helical spin-resolved nature of edge currents.