Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-121
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 102 (2015) | ISSUE 2 | PAGE 82
Emergent physics on Mach's principle and the rotating vacuum
Abstract
Mach's principle applied to rotation can be correct if one takes into account the rotation of the quantum vacuum together with the Universe. Whether one can detect the rotation of the vacuum or not depends on its properties. If the vacuum is fully relativistic at all scales, Mach's principle should work and one cannot distinguish the rotation: in the rotating Universe+vacuum, the co-rotating bucket will have a flat surface (not concave). However, if there are "quantum gravity" effects which violate Lorentz invariance at high energy, then the rotation will become observable. This is demonstrated by analogy in condensed-matter systems, which consist of two subsystems: superfluid background (analog of vacuum) and "relativistic" excitations (analog of matter). For the low-energy (long-wavelength) observer the rotation of the vacuum is not observable. In the rotating frame, the "relativistic" quasiparticles feel the background as a Minkowski vacuum, i.e. they do not feel the rotation. Mach's idea of the relativity of rotational motion does indeed work for them. But rotation becomes observable by high-energy observers, who can see the quantum gravity effects.