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We investigate the edge bands of the relaxed phosphorene edges. The edge relaxation is modeled by letting

the outmost bonds be different. By treating the relaxed hopping energy as a parameter, we observe the phase

transition for the edge band appearance in the bulk gap. The analytical expression of the relaxed hopping for

the phase transition is obtained by means of tight-binding parameters.
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I. Introduction. Mono-layer materials have drawn

much attention since graphene was discovered in lab-

oratory [1]. Several alternatives, such as silicene, and

metal dichalcogenides exist stably but have their limi-

tations. Graphene has no energy gap [2], carrier mobil-

ity of metal dichalcogenides is not high enough [3], and

silicene can only be synthesized on metal surfaces [4].

Recently, a new candidate, phosphorene (a monolayer

of back phosphorus), was exfoliated from its bulk coun-

terpart, which overcomes all these shortages and shows

great potential for application [5].

Phosphorene can be prevent to degrade and can keep

high electric quality for long time [6, 7]. Phosphorene

field-effect transistors have large on-off current ratio [5],

and perform reliably at room temperatures [8]. Phos-

phorene has a puckered lattice structure, and the projec-

tion of it on the layer plane can be viewed as a deformed

honeycomb lattice, as shown in Fig. 1a. Due to the lat-

tice puckering, the electronic structure, as well as the

collective excitations, exhibit strong anisotropy while

the in-plane static screening remains almost isotropic

[9, 10]. Phosphorene nanoribbons could be jointed to

construct nanotubes without strain energy penalty [11].

It was found that phosphorene sheet can sustain tensile

strain up to about 30 % [12] which makes it possible to

dramatically modify the properties of phosphorene by

applying large strain. It was reported that the energy

gap can be adjusted by strain and a semiconductor–

metal transition could be induced [13]. The optical re-

sponse is also anisotropic [14] and sensitive to the orien-

tation of the strain applied [15]. Recently, tight-binding

parameters were extracted from ab initio calculations

1)e-mail: yang.mou@hotmail.com

Fig. 1. (Color Online) (a) – Sketch of phosphorene lat-

tice. Red- and blue-filled circles represent puckered up and

puckered down atoms, the rectangular shows the primitive

cell, and the rhombus illustrates the primitive cell regard-

less of the puckering. (b, c) – Site and bond configurations

of relaxed edges, and the wavefunctions on series of filled

sites will be investigated

[16], which provides a platform for further theoretical

researches.

It was convinced that there exist edge bands local-

ized near zigzag edges of pristine phosphorene ribbons

[17, 18]. The edge bands have their topological origin,

which was confirmed by observing the edge band evolu-

tion when continuously deforming the standard honey-

comb lattice to the phosphorene one [18]. Realistic phos-

phorene edges are more complicated because of edge re-
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laxation and chemical species termination. Edge states

at zigzag edge can be removed by edge hydrogenation

[19–22], and also by other species termination on edges

[23]. Edge relaxation of the armchair edge results in

Peierls transition of the edge atoms (edge atoms get

closer pair by pair), which induces few edge bands, but

the ribbon remain a semiconductor [22, 24]. These stud-

ies on the complex edges are mainly numerical, and an-

alytical models are needed to get some insights on the

edge bands of phosphorene ribbons.

In this paper, we investigate the edge bands of the

relaxed phosphorene edges. Edge relaxation leads to

the bond lengths near edges are different from those

in bulk, and thus the hoppings near edges are different.

We model the edge relaxation by letting the outmost

bonds be different, as shown in Figs. 1b and c. By treat-

ing the relaxed hopping energy as a parameter, we ob-

serve the phase transition for the edge band appearance

in the bulk gap. The analytical expression of hopping

energy for the phase transition is obtained. Our calcu-

lations could be qualitative explanations for the edge

band elimination on hydrogenated zigzag edges, and for

the edge band formation on relaxed armchair edges.

II. Tight-binding parameters and bulk Hamil-

tonian. The energy bands of phosphorene can be well

described by the tight-binding model by taking into

account five hoppings labeled by t1 through t5 shown

in Fig. 1a. The values of these hoppings were reported

to be (in units of eV) 3.665,−1.22,−0.105,−0.205, and

−0.055, respectively [16]. The nearest hoppings t1 and

t2 are the largest ones in amplitude, and dominate the

basic features of the band structure such as the heav-

ily anisotropy between x- and y-directions. The next-

nearest hopping t3 is quite small, which accounts for the

asymmetry between electron and hole dispersions. The

next-next-nearest hoppings, t4 and t5, result in slight

corrections of the anisotropy. The non-nearest parame-

ter t3, t4 and t5 do affect the band structures, but the

topological properties of the band structure is domi-

nated by the nearest hoppings [18]. Therefore, we only

take the nearest hoppings in to account in this paper.

Due to the atom puckering, one primitive cell of

phosphorene lattice is a rectangular containing four

atoms. However, the puckering can be ignored after

the tight-binding hoppings are obtained (the pucker-

ing is already reflected by the relative amplitudes be-

tween these hoppings), the lattice was equivalent to its

projection on the layer plane, and the primitive cell is

reduced to a rhombus which only includes two atoms,

as argued in Ref. [18]. The two primitive cells are illus-

trated in Fig. 1a. The projected phosphorene lattice, like

the standard honeycomb lattice, consists of two sublat-

tices named by A and B. In the frame of nearest tight-

binding, by selecting a dimer, saying, dimer 1 in Fig. 1a,

to study, the bulk Hamiltonian in k-space in basis of

A–B sublattices can be immediately written down as

Hbulk =

[

0 h

h∗ 0

]

,

h = t1 + 2t2e
−ikxdx cos kydy,

(1)

where dx = a+ bx and dy = by, with a and b being the

in-plane bond lengths shown in Fig. 1a, and the sub-

scripts denoting the x- and y-components. The explicit

form of h depends on the dimer selection, and any form

of h results in the same energy dispersion

E2 = t21 + 4t1t2 cos kxdx cos kydy + 4t22 cos
2 kydy. (2)

The band edges (bottom of electron band and top of

hole band) are the energies at kx = 0 and ky = 0, say-

ing,

E(k = 0) = ±(t1 + 2t2). (3)

The separation between the two energies is the energy

gap.

III. Edge bands. Winding number reflects the

number of edge band, and can be deduced from the bulk

Hamiltonian by choosing a proper dimer. It can be ver-

ified that edge bands can be found on the zigzag edge

of phosphorene but cannot on armchair and bearded

zigzag edges [18]. However, the winding number analysis

can only be applied for the system with standard edges.

For realistic ribbons, the bonds between the atoms near

edges are different from those between bulk ones due to

bond relaxation, reconstruction, and atom absorption,

and the winding number is not a good quantity to reflect

edge band properties anymore. We model the relaxation

and reconstruction by letting the outmost hopping t0
being a changeable parameter. The site and bond con-

figurations of the edge relaxation model are shown in

Figs. 1b and c. In the following, we will refer these bonds

as relaxed bonds and the outmost sites connected by the

relaxed bonds as relaxed sites. When t0 = t1, the edge

in Fig. 1b is the bearded zigzag and in Fig. 1c is arm-

chair. For the case of t0 = 0, edges in the two figures

are zigzag and bearded armchair, respectively.

Fig. 2 shows the evaluation of the band structure of

a zigzag ribbon laying along y-direction when the re-

laxed bond hopping t0 is tuned from t1 to 0. When t0
is deviated from the normal value t1, a band is grad-

ually peeled from the bulk electron dispersion, and so

does another band from the hole dispersion. At a certain

value t0 = tC , the two bands are completely separated
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Fig. 2. (Color online) Evalution of band structure of the phosphorene ribbon with the edge shown in Fig. 1b when the relaxed

bond t0 changes from t1 to 0. The inset illustrates the wavefunction maglitude on those filled sites in Fig. 1b of the state

labeled by the dot in e

from the bulk bands, and edge bands appear in the band

gap. When t0 changes on, the edge bands are the more

and more apart from the bulk bands and closer to each

other. They finally overlap and merge into one flat band

when t0 = 0, and the band structure is reduced to the

case of zigzag edge. The states of the flat band are edge

states, as the inset illustrates.

The properties of band edge can be deduced by solv-

ing the effective Hamiltonian of a dimer close to the

edge, saying, dimer 2 in Fig. 1b. The effective Hamilto-

nian consists two parts, a selfenergy Σrelax to describe

the coupling between dimer 2 and the relaxed site, and

Hsemi to summarize the dimer interacting with other

sites exclusive the relaxed site, which is indeed the ef-

fective Hamiltonian of the dimer for a semi-infinite sys-

tem with the relaxed atoms being cut down. We write

effective Hamiltonian as

Hdimer2 = Hsemi +Σrelax. (4)

The eigen problem of the effective Hamiltonian with

combination of Eq. (2) determines all properties of the

edge bands. In basis B–A sublattices (we always let the

left site of the dimmer be the first), Hsemi has the form

Hsemi =

[

0 h′12

h′21 0

]

. (5)

The calculation of the elements h′12 and h′21 relies on

the fact that wavefunctions on other sites connecting to

dimer 2 can be mapped to the wavefunctions of sites of

dimer 2. For instance, site B1 couples site A2 and A3,

the wave functions on them are ψA2
= e−ikxdxeikydyψA1

and ψA3
= e−ikxdxe−ikydyψA1

and site A1 is just one

site belong to dimer 2 (see Fig. 1b), where ky is real but

kx is imaginary. By this method, we have the matrix

elements

h′12 = t2e
−ikxdx(eikydy + e−ikydy ),

h′21 = t1e
2ikxdx + t2e

ikxdx(eikydy + e−ikydy ).
(6)

Dimer 2 coupling to the relaxed site is reflected in the

Shrödinger equation of site B1 by EψB1
= t0ψC +

+ t2ψA2
+ t2ψA3

, in which t0ψC can be replaced with

t20ψB1
/E by applying the Shrödinger equation of site C,

saying, EψC = t0ψB1
. In matrix language, we have the

selfenergy as

Σrelax =
t20
E

[

1 0

0 0

]

. (7)

Inserting the obtained Σrelax and Hsemi in to Eq. (4),

we work out the explicit form of the effective Hamilto-

nian. The eigen problem of it gives a relation between

kx, ky and E, which is not enough to obtain the en-

ergy dispersions of edge bands, because the imaginary

wavevector kx is not a free variable, but dependent on

other quantities, saying, kx = kx(ky , E).

When the phase transition occurs, the wavevector kx
at ky = 0 experiences a change form imaginary number

to real one. So we have the constrictions kx = 0 and

ky = 0 for the phase transition. Applying the constric-

tions to Eq. (4), the effective Hamiltonian of dimer 2 is

reduced to

Hdimer2 =

[

t0/E
2 2t2

t1 + 2t2 0

]

. (8)

Solving the eigen problem and combining Eq. (3) (the

energy for kx = 0 and ky = 0), we immediately have the

value of t0 for the phase transition,

tC =
√

t21 + 2t1t2. (9)

For the adopted hopping parameters, we have tC =

= 0.58t1. What happens to the band structure when

the phase transition occurs can be seen in Fig. 2c.

Fig. 3 shows the evaluation of the band structure of

a armchair ribbon laying along x-direction when the re-

laxed bond t0 is changed from t1 to 0. It tells almost the

same story as Fig. 2 does. Edge bands appear gradually
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Fig. 3. (Color online) Evalution of band strucuture of the phosphorene ribbon with the edge shown in Fig. 1c when the relaxed

bond t0 changes from t1 to 0. The inset illustrates the wavefunction maglitude on those filled sites in Fig. 1c of the state

labeled by the dot in (h)

when t0 changes. After t0 decreases beyond a transition

value tC , the edge bands can be found in the energy

gap. Interestingly, at a special value t0 = tX , a band

crossing appears at kx = 0 and a one-dimensional Dirac

point arises. When t0 decreases to 0, the edge bands of

bearded armchair ribbon are nearly flat but not zero en-

ergy bands. The localization of the edge bands for the

bearded armchair edge is illustrated in the inset. The

explicit values of t0 for phase transition and edge band

crossing are both determined by the effective Hamil-

tonian of dimer 2 in Fig. 1c. By the same method we

treated the zigzag ribbon, we have the elements ofHsemi,

h′12 = t1e
−2ikxdx + t2e

−ikxdxeikydy ,

h′21 = t1e
2ikxdx + t2e

ikxdxeikydy .
(10)

There are two relaxed sites connected with dimer 2,

which causes a little bit more complication than the pre-

vious case, but the physics is exactly the same. Without

proven, we write down the selfenergy, a k-independent

matrix again, as

Σrelax = t22

[

E − t0

(

0 1

1 0

)]−1

. (11)

When the phase transition occurs, applying the con-

strictions kx = 0 and ky = 0 to Eq. (10), we have

Hsemi = (t1 + t2)

[

0 1

1 0

]

. (12)

Inserting the obtained Hsemi and Σrelax into Eq. (4),

working out the eigen values, and combing Eq. (3), we

have the value of t0 for the phase transition,

tC = t1 + t2. (13)

For the adopted hopping parameters, we have tC =

= 0.67t1. The band structure for this situation is shown

in Fig. 3c.

Now we turn to the edge band crossing. The crossing

happens at kx = 0 but nonzero ky , so we have

Hsemi = (t1 + t2e
ikydy)

[

0 1

1 0

]

. (14)

Inserting Hsemi into Eq. (4), we obtain Hdimer2 under

the constriction kx = 0. The eigen values of Hdimer2

must be zero when the crossing occurs. To ensure this,

the value of t0 has to be

tX = t2

(

t1
t2

+ e−κdy

)

−1

, (15)

where κ = |ky| is the rate of the edge state decay-

ing to the bulk. By setting E = 0 in Eq. (2), we have

cosh(κdy) = −t1/2t2, and so the the decay rate is ob-

tained. For our parameters, we have tX = 0.12t1. The

band crossing can be found in Fig. 3d.

In the above discussions, all non-nearest hoppings

are neglected. Among them, t3 has most notable effect
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on the edge bands. A nonzero t3 introduces identical

diagonal elements as 4t3 cos kxdx cos kydy in the bulk

Hamiltonian in Eq. (1), which breaks the electron-hole

symmetry and induces distortion of edge band curves

as well. The bulk band of the ribbons around Γ point

is thus lifted by 4t3 = −0.11t1. Because the surround-

ing situation of the relaxed sites is different from that of

bulk ones, the lift of the edge bands is less than the bulk

dispersion. This leads to vertically relative displacement

between the bulk and edge bands, and make it possible

that the edge bands enter the bulk band region without

losing the edge property (decay into the bulk), which

were verified numerically.

IV. Summary. We studied the edge bands of phos-

phorene ribbon with relaxed edges by the tight-binding

model. The relaxation was modeled by letting the out-

most bonds relaxed from the bulk ones. We found there

is a critical value of the relaxed hopping for the existence

of edge bands within the energy gap, and the value of

relaxed hopping for the transition was calculated ana-

lytically.
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