Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-120
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 102 (2015) | ISSUE 11 | PAGE 864
Spin Hall conductivity in three-dimensional topological insulator/normal insulator heterostructures
Abstract
In the framework of an effective functional approach based on the  k• method, we study the combined effect of an interface potential and a thickness of a three-dimensional (3D) topological insulator (TI) thin film on the spin Hall conductivity in layered heterostructures comprising TI and normal insulator (NI) materials. We derive an effective two-dimensional (2D) Hamiltonian of a 3D TI thin film sandwiched between two NI slabs and define the applicability limits of approximations used. The energy gap and mass dispersion in the 2D Hamiltonian, originated from the hybridization between TI/NI interfacial bound electron states at the opposite boundaries of a TI film, are demonstrated to change sign with the TI film thickness and the interface potential strength. Finally, we argue that the spin Hall conductivity can efficiently be tuned varying the interface potential characteristics and TI film thickness.