For authors
Submission status

Archive (English)
   Volumes 113-119
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
VOLUME 102 (2015) | ISSUE 12 | PAGE 932
Electrohydrodynamics of cone-jet flow at high relative dielectric permittivity
In this paper we propose a new solution of the electrohydrodynamic equations describing a novel cone-jet flow structure formed at a conductive liquid meniscus in an electric field. Focusing on the liquids characterized by a high relative dielectric permittivity and using the slender body approximation, the cone-jet transition profiles and their characteristic radii are predicted in relation to the material parameters. The stable value of the cone angle is obtained using the Onsager's principle of maximum entropy production. Three different regimes of the cone-jet flow behavior are identified depending on the relative importance of capillary, viscous and inertial stress contributions. The presented complete analytical solutions for the cone-jet transition zone and the far jet region yield several different laws of algebraic decrease for the radius, surface charge and electric field of the jet.