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We introduce and analyze two different scenarios for violation of the Wiedemann–Franz law in strongly

correlated electron systems of solids, close to a topological quantum critical point (TQCP) where the density

of states N(0) diverges. The first, applicable to the Fermi-liquid (FL) side of the TQCP, involves a transverse

zero-sound collective mode that opens a new channel for the thermal conductivity, thereby enhancing the

Lorenz number L(0) relative to the value L0 = π2k2
B/3e

2 dictated by conventional FL theory. The second

mechanism for violation of the WF law, relevant to the non-Fermi-liquid (NFL) side of the TQCP, involves

the formation of a flat band and leads instead to a reduction of the Lorenz number.

DOI: 10.7868/S0370274X15240091

Introduction. The perplexing issue of a possible vi-

olation of the Wiedemann–Franz (WF) law in strongly

correlated electron systems of solids has recently at-

tracted much attention. The WF law states that as the

temperature T goes to zero, the product L(T ) = κρ/T

of the thermal conductivity κ and the electrical resis-

tivity ρ, divided by T , always approaches the Lorenz

number L0 = π2k2
B
/3e2. Over a brief period, several ar-

ticles have appeared [1–6] whose authors reported or dis-

cussed putative evidence of a breakdown of this funda-

mental law in the antiferromagnetic (AF) heavy-fermion

metal YbRh2Si2. This compound has become one of the

prime test cases in the quest for understanding of non-

Fermi-liquid (NFL) behavior of electron systems that

exhibit quantum critical points (QCPs) at which lines

of second-order phase transitions are terminated. Con-

clusions drawn about the fate of the WF law have var-

ied, but the authors of Ref. [1] assert that the WF law

is definitely violated.

When one considers the possibility of violation of

the WF law, it must be emphasized that this law is,

in fact, well satisfied across the wide range of metallic

electron systems that have been studied experimentally,

except for two particularly interesting compounds in ad-

1)e-mail: vak@wuphys.wustl.edu

dition to YbRh2Si2. The first is the normal state of the

superconducting heavy-fermion metal CeCoIn5 [7] and

the second, the heavy-fermion compound YbAgGe [8].

QCPs of the type indicated above are present in the

phase diagrams of all three of these electron systems.

It is important to recognize that in all the cited

publications claiming that the WF law is definitely

or likely to be violated, the temperatures reached in

the measurements involved were no lower than 40 mK.

However, in recent studies of YbRh2Si2, measurements

have been performed at considerably lower tempera-

tures T ≃ 10mK. Most significantly, the thermal re-

sistivity w(T ) = L0T/κ(T ) was observed to execute an

unexpected downturn at T ≤ 30mK, shown in Fig. 1 of

Refs. [4, 5]. This behavior confounds any strong conclu-

sions previously made about the fate of the WF law in

this compound and casts doubt on others.

Preliminaries: relevant phenomena in the

quantum critical regime. According to the authors

of Refs. [4, 5], the occurrence of the downturn in the

thermal resistivity w(T ) points to the presence of an un-

known collective mode, since all phonon contributions

have disappeared already by T ≤ 1K. One might then

suppose that in the AF state of YbRh2Si2, which termi-

nates at TN ≃ 70mK, magnons can provide the antici-

pated boson mode. This is not the case, however, since
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the downturn in w(T ) observed at T ≤ 30mK persists

in external magnetic fields whose magnitude is in ex-

cess of a critical value sufficient for termination of the

AF ordering [4, 5].

On the other hand, there is a special feature of the

phase diagram of YbRh2Si2 that is relevant to a search

for the posited boson mode. Namely: the AF QCP

resides close to a topological quantum critical point

(TQCP) associated with the divergence of the density

of states N(0), which in a homogeneous Fermi liquid is

proportional to the effective mass M∗. The two critical

points, i.e., the TQCP and that of the termination of

the AF state at TN, coincide in the presence of a tiny

external magnetic field Bc ≃ 70mT [9, 10]. That the

AF state of YbRh2Si2 lies on the FL side of the TQCP

is confirmed experimentally by verification that its ther-

modynamic and kinetic properties, such as the specific

heat and resistivity, behave in accordance with the pre-

dictions of Fermi-liquid (FL) theory.

The proximity of a Fermi system to its TQCP cre-

ates the opportunity for propagation of a transverse

zero sound mode, henceforth referred to as a zeron

for brevity, which is known to propagate in 3D liquid
3He. Applicability of the zeron scenario to elucidation

of properties of 2D liquid 3He has been explored in

Refs. [11–13]. In general, the zeron mode provides an ad-

ditional contribution to the thermal conductivity κ anal-

ogous to that coming from phonons and/or magnons.

However, in contrast to the magnon mode, the zeron

contribution to κ is quite insensitive to the imposition

of external magnetic fields B, a feature consistent with

experimental observations of the behavior of κ(B) in

YbRh2Si2 [4, 5].

A different mechanism for violation of the WF law

comes into play on the NFL side of the TQCP. Beyond

this point it is no longer the case that variation of the

ground-state energy E, given by the FL expression

δE =
∑

ǫ(p)δn(p), (1)

yields a positive result for any admissible variation of

the Landau quasiparticle momentum distribution n(p).

This breakdown triggers a rearrangement of the Landau

state [14]. The WF law can be profoundly affected if

the rearrangement involves a specific topological phase

transition traditionally known as fermion condensation,

which gives rise to the formation of flat bands [15–19].

Emergence of a flat band entails renormalization of con-

ventional FL formulas, notably those in which the resid-

ual electrical and thermal resistivities, respectively ρ0
and w0, are necessarily attributed to impurities. It will

be shown that the impurity-independent flat-band con-

tribution to ρ0 is always less than that to w0. Conse-

quently, the net effect associated with the flat-band sce-

nario on the WF law is a decline of the ratio L(0)/L0

from unity, in agreement with available experimental

data [2, 5, 7, 8].

Violation of WF law: zeron scenario. We now

turn to a more detailed analysis of the posited scenarios

for violation of the WF law, beginning with the zeron

mechanism for the recently observed downturn of the

thermal resistivity. On the FL side of the TQCP, the

intervention of the zeron mode can be addressed with

the aid of the standard FL kinetic equation [20, 21]

[

ωk−k
∂ǫ(p)

∂p

]

φ(p,k)=−k
∂n(p)

∂p

∫

f(p,p1)φ(p1,k)dυ1,

(2)

in which φ(p,k) describes the deviation of the quasipar-

ticle momentum distribution from equilibrium, f(p,p1)

is the Landau interaction function, and dυ is the volume

element in 3D momentum space, while ωk = czk. The

impact of an external field due to the crystal lattice will

be discussed later.

By way of preparation, it is helpful first to consider

the basic model of a homogeneous Fermi liquid in which

a single band crosses the Fermi surface. In this case, the

dispersion equation (2) for the zeron group velocity cz
is conveniently recast as [22]

1− 6

F1
= 3

(

c2z
v2
F

− 1

)(

cz
2vF

ln
cz + vF

cz − vF

− 1

)

(3)

in terms of the dimensionless first harmonic F1 =

= f1N(0) of the Landau interaction function f , where

N(0) = pFM
∗/π2 is the density of states of 3D homo-

geneous matter. Here we may locate the TQCP itself at

the point where vF = pF/M
∗ = 0, which is determined

by the relation [20]

1 =
1

3
f1N0(0), (4)

in terms of the density of states N0(0) = pFM/π2 of

noninteracting quasiparticles. As seen from Eq. (3), a

nontrivial solution does exist provided F1 > 6, or equiv-

alently M∗/M > 3.

Calculations are greatly facilitated near the TQCP

where F1 ≫ 1; indeed they essentially coincide with

those executed for longitudinal zero sound in a neutral

Fermi liquid. Simple algebra leads to [22]

cz =
v0
F

√

5M∗/M
∝ vF

√

F1, (5)

where v0
F
= pF/M . Just as for the longitudinal mode in

a neutral Fermi liquid, the transverse mode in question
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feels no Landau damping, since cz > vF. Moreover, its

dissipation at T = 0 is also related to the generation

of incoherent electron particle-hole (ph) pairs. This fea-

ture allows us to adopt the same procedure in evaluating

the damping γz(T ) of the zeron mode by the e−ph pair

mechanism, as applied to evaluation of the damping of

longitudinal zero sound in neutral Fermi systems [22].

The result is γz(T ) = 1/[czτ(T )], where τ(T ) ∝ T−2 is

a time characteristic of the damping of single-particle

excitations. Hence γz(T → 0) ∝ T 2, implying that the

scattering length l goes like T−2, while the thermal con-

ductivity κ ∝ C(T ) l(T ) vF varies as T−1 [23] to produce

the behavior w(T ) = w0 + w2T
2.

The single-band model developed above must be

modified to deal with the actual case of YbRh2Si2, in

which several electron bands simultaneously cross the

Fermi surface. Among them, those associated with light

carriers of Fermi momenta vl play the major role. The

Fermi surface of YbRh2Si2 is anisotropic, with heavy

carriers occupying its smaller portion. In the simplest

case, assumed here, the velocities of light carriers are

subsumed by a single parameter vl ≫ vF, and Eq. (3) is

replaced by

1− 6

F1
= 3

(

c2z
v2
F

− 1

)(

cz
2vF

ln
cz + vF

cz − vF

− 1

)

+

+
3vF

vl

(

c2z
v2l

− 1

)(

cz
2vl

ln
cz + vl
cz − vl

− 1

)

. (6)

It is readily seen that the zeron group velocity remains

almost unchanged. Indeed, upon neglecting the contri-

bution from the light band to the real part of the right

side of Eq. (6) in view of the small value of the prefactor

vF/vl, we arrive at the same equation as before for the

real part cR of the zeron group velocity cz = cR + icI .

Thus, cR does in fact satisfy Eq. (5). A new feature of

the modified model is the presence of Landau damp-

ing of the zeron mode, which comes into play because

near the topological QCP, the zeron group velocity cR
is larger than the Fermi velocity vF of the heavy band,

while remaining less than that of the light band.

The inequality cR < vl lifts the ban on zeron emis-

sion/absorption by electrons, since in this case the con-

servation law ǫ(p+k)−ǫ(p)−ωk = 0 is met for the light

carriers, thereby opening a channel for damping of the

zeron mode. Observe then that in the last term on the

right side of Eq. (6) we have ln [(cz + vl)/(cz − vl)] ≃
≃ ln(−1) = iπ, because |cz| ≪ vl. This term cancels

out the imaginary part of the first term to establish

cI ∝ (v0
F
/vl)

2 pF

M∗
. (7)

Since cI ∝ 1/M∗ ≪ cR ∝
√

1/M∗, the zeron mode

turns out to be weakly damped, much like the phonon

mode in solids.

Pursuing this analogy, the kinetic theory of the

electron-zeron problem recapitulates that of electron-

phonon physics. The only significant difference natu-

rally concerns the normalization of the electron-zeron

vertex part g. This quantity is determined from anal-

ysis of the equation for the amplitude Γ(1, 2, ω) of

electron-electron scattering in the ph channel near its

pole ω = ωk [24]. In symbolic form one has Γ =

= U + (UGGΓ), where U denotes the block of Feyn-

man diagrams irreducible in the ph channel and G is

the single-particle Green function; the brackets imply

integration and summation over intermediate momen-

tum and spin variables. This amplitude consists of a

pole term ΓP (1, 2, ω → ωk) = g(1)g(2)/(ω − ωk) and a

regular remainder ΓR(1, 2, ω) that satisfies the symbolic

equation ΓR = U +
(

UGGΓR
)

+ (UXg) g where X =

= ∂(GG)/∂ω. Upon multiplying both sides of this equa-

tion by the product g GG from the left and integration

over intermediate momenta and summation over spins,

most of the terms cancel out to yield g2∂(GG)/∂ω = −1

[24]. In the explicit form, it reads

g2(k)

∫

[n(p+ k)−n(p)][ǫ(p+ k)−ǫ(p)]

{ω2
k − [ǫ(p+ k)−ǫ(p)]2}2

2 d3p

(2π)3
=

1

2ωk

.

(8)

Analysis of this relation is greatly simplified in the vicin-

ity of the topological QCP. Since c2z ≫ v2
F
, the difference

ω2
k − [ǫ(p + k) − ǫ(p)]2 reduces to its first term, c2zk

2;

after some algebra we obtain

g2(k) ≃ v0
F
vFωk

p3
F

. (9)

The zeron contribution κz(T ) to the conventional

electron thermal conductivity κee(T ) ∝ T−1 can be

evaluated with the aid of textbook formulas. In these,

the phonon Debye temperature is replaced by the ze-

ron temperature Θz = czkmax, where kmax denotes the

maximum value of the zeron wave vector. This yields

(see e.g. [23])

κz(T ) ∝ Θ2
z/T

2, T < Θz,

κz(T ) = const, T > Θz.
(10)

As T → 0, the zeron part of κ(T ) is seen to soar upward

more rapidly than κee(T ). Therefore Θz can in fact be

responsible for the upturn of the thermal conductivity

κ(T ) at T → 0 reported in Refs. [4, 5], provided its value

does not exceed 30 mK.

The zeron-electron collision integral Ize(T ) is

markedly enhanced in the classical-like region T ≥ Θz
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where all the zerons have energies lower than T . Setting

ǫ′ = ǫ(p+ k), this integral takes the form [23]

Iez ∝ ∂n0(ǫ)

∂ǫ

∫

g2(k)
∂Nz(ω)

∂ω
δ(ǫ−ǫ′) (ϕ−ϕ′)

ωd3k

(2π)3
,

(11)

where ϕ(ǫ) and ϕ′ = ϕ(ǫ′) are the deviations of the

electron distribution function from its equilibrium form

n0(ǫ) = [1 + exp(ǫ/T )]−1, and g is again the electron-

zeron vertex part. The equilibrium zeron distribution

function Nz(ω) is simply T/ω. Insertion of Eq. (9) into

Eq. (11) and straightforward algebraic steps lead to

Iez(T ≥ Θz) ≃
k2max

p2
F

ϕ. (12)

At T ≥ Θz, both the electron-zeron collision integral

and the zeron contribution to the thermal and electrical

resistivities differ from their electron-phonon counter-

parts [23] by the ratio k2max/p
2
F
.

The magnitude of the factor k2max/p
2
F

can be esti-

mated by tracing the evolution of the spectrum ωz(k)

as a function of wave vector k. The key point is that

the sign of the difference ω2
k − [ǫ(p + k) − ǫ(p)]2 in

Eq. (8) must be positive. Hence ωk grows rapidly as

ǫ(p+k)− ǫ(p) increases, becoming a nonlinear function

of k in the momentum region where the spectrum ǫ(p)

ceases to be relatively flat. Such a nonlinear behavior of

ωk triggers the decay of the zeron mode at a critical wave

vector kcr ≃ kmax where the relation ω(kcr) = ωk1
+ωk2

,

with k1 + k2 = kcr, is met for the first time, implying

that the zeron mode becomes unstable at k > kcr.

Working within the zeron scenario, we now seek a

resolution of the puzzling low-T behavior of the ther-

mopower (or Seebeck coefficient) of YbRh2Si2, as re-

vealed in Ref. [25]. According to conventional (i.e., FL)

theory, the Seebeck coefficient S(T ) must vary linearly

with temperature as T → 0, i.e., −S(T ) = sFLT , with a

positive constant sFL [26, 23, 27]. Instead, as measured

in this compound, the function −S(T ) exhibits a deep

downturn with a subsequent sign change that occurs in

the same temperature region where the abrupt upturn

in thermal conductivity was observed [4, 5].

This coincidence suggests that the downturn is due

to zeron drag, in analogy with the well-known phonon

drag. Since input parameters specifying the boson mode,

such as the group velocity c or the critical wave vector

kmax, are absorbed into the corresponding Debye tem-

perature, the zeron contribution Sz to the Seebeck S(T )

may be written as [26, 23]

Sz ∝ T 2/Θ2
z, T < Θz,

Sz ∝ Θz/T, T > Θz.
(13)

In case the drag contribution to S(T ) and the stan-

dard FL contribution have opposite signs, they may can-

cel each other, thereby allowing the total Seebeck coeffi-

cient S to change sign. The maximum Smax
z of the zeron

drag term, although small, is nevertheless temperature

independent [23], while the FL term – sFLT vanishes

at T → 0. It then follows that the total Seebeck coef-

ficient S becomes positive in some temperature region,

provided Θz meets the requirement

Θz < Smax
z /sFL. (14)

Since the FL term in S prevails at T → 0, this implies

that at extremely low Θz, the Seebeck coefficient S(T )

must change sign twice (see Fig. 1). This behavior pro-

vides a fingerprint of the zeron scenario for the NFL

component of the thermopower.

The role of both these mechanisms becomes more

profound in the presence of a periodic external field

of the crystal lattice, with Bloch–Wannier wave func-

tions as eigenfunctions of the solid-state Hamiltonian.

As an illustration, consider the well-known tight-binding

model, in which the Coulomb interaction between mov-

ing electrons and localized atoms is taken into account,

while interactions between electrons themselves are ne-

glected. The single-particle spectrum of the simplest

version of this model, in which only nearest-neighbor

matrix elements of the electron-atom interaction Hamil-

tonian are included, has the form ǫ(p) ∝ cos pxa +

+cos pya+cospza, where a is the lattice constant. This

formula implies that the inverse tight-binding group ve-

locity 1/|∂ǫ(p)/∂p|, which enters the density of states

Na(0) of noninteracting electrons moving in the exter-

nal field of the crystal lattice, diverges near the saddle

points (0, π), . . . , (π, 0) as 1/| sin pvHx a| ≃ 1/| sinpvHy a| ≃
≃ 1/| sin pvHz a|, where pvH = (pvHx , pvHy , pvHz ) stands for

the coordinates of the van Hove point. Since the com-

pounds of interest here have open Fermi surfaces cross-

ing the Brillouin zone close to the saddle points, such

an enhancement is often substantial.

In dealing with strongly correlated electron systems,

the product f1Na(0) must then be of order of unity (cf.

Eq. (4)), assuming f1 is again identified with the corre-

sponding matrix element of the effective e–e interaction.

Consequently, when estimating the suppression of the

group velocity cz, one can employ a modified version

cz =
v0
F√

5M∗Ma

(15)

of Eq. (5), in which the parameter Ma specifies the den-

sity of states Na(0) in the same way as M specifies the

density of states N0(0).
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Fig. 1. (Color online) Schematic illustration of the total

Seebeck coefficient S (red line) and its separate Fermi-

liquid SFL = −sFLT (green line) and zeron Sz (blue lines)

contributions. In the case Θz > Smax
z

/sFL (panel a) the

total S(T ) = −SFLT + Sz(T ) does not change sign, while

in the opposite case Θz < Smax
z

/sFL (panel b) it changes

sign twice

The enhancement of the density of states N(0) of

YbRh2Si2 beyond what is typical of conventional metals

can be estimated from experimental data on the specific-

heat coefficient γ = C(T )/T = 1.5 J/mole K2. In con-

ventional metals, the e–e interaction is rather small, and

the densities of states of these systems, varying in the

interval 1–5 mJ/mole K2, are well approximated by the

FL formula N0(0) ∝ M . We thus infer that the total en-

hancement factor N(0)/N0(0) = M∗/M for YbRh2Si2
is about 103. Presumably the difference between M∗

and M∗
a is not as large as that between M∗ and M . If

so, the ratio cz/v
0
F

is suppressed by a factor ≃ 103.

The impact of anisotropy effects on the magnitude

of the ratio k2max/p
2
F

is likewise well pronounced, since

YbRh2Si2 has a typical open Fermi surface, with flat-

tening of the single-particle spectrum occurring solely

in narrow regions close to the van Hove points. This

situation provides for an additional decline of the char-

acteristic zeron temperature Θz, down to values com-

patible with the 30 mK needed to explain the upturn of

the thermal conductivity of this compound [4, 5].

Judging from the preceding theoretical development,

analysis, and results, the zeron scenario for explanation

of the experimental findings of Refs. [4, 5] seems to be

rather plausible. If this scenario is indeed applicable, the

fate of the WF law in YbRh2Si2 at the lowest accessible

temperatures can be clarified only by subtracting the

zeron contribution to the thermal resistivity, as treated

above.

It is noteworthy that in the vicinity of the TQCP

where the density of states N(0) diverges, the number

of collective modes associated with Eq. (2) and spec-

ified by two quantum numbers (orbital momentum l

and its projection m), becomes rather large. Accord-

ingly, the task of finding the spectrum of these modes

becomes quite complicated near the topological QCP,

where many harmonics of the interaction function con-

tribute to the dispersion equation (2). We address here

the simple case m = l in homogeneous matter where the

dispersion equation reduces to [22]

Fl

(2l)!

1
∫

0

[P l
l (x)]

2 x2

s2 − x2
dx = 1, (16)

with P l
l (x) a spherical function and Fl = flN(0). For a

solution s = c/vF > 1 to exist, the harmonic fl must be

positive. However, as seen from the case l = 1 addressed

above, although this requirement is necessary, it is not

sufficient (recall that smin = 1). In the present case,

replacement of x2/(1 − x2) by −1 + 1/(1 − x2) allows

both the integrals involved to be performed analytically,

yielding

(Fl)
cr = (fl)

crpFM
∗/π2 = 2l(2l+ 1). (17)

This result, setting the lower limit on the dimensionless

parameter Fl allowing propagation of the corresponding

zero-sound mode, is in agreement with (F1)
cr = 6 in the

zeron case l = 1. As seen, the greater the orbital mo-

mentum l, the larger the effective mass M∗ should be to

meet the condition involved. In this situation, the im-

mediate vicinity of the TQCP tends to be overcrowded

by different zero sounds, opening new boson channels

that contribute weightily to the thermal conductivity κ.

Violation of WF law: flat-band/Peierls sce-

nario. Returning to the case of YbRh2Si2, we ob-
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serve that upon subtracting the posited zeron contri-

bution to the thermal conductivity, the WF law breaks

down on the disordered side of the AF transition at

TN ≤ T < 1K, the ratio L(T )/L0 becoming less than

unity [4, 5]. It is presumably significant that other

instances of violation of the WF law documented in

the literature [7, 8] also involve a decline of the WF

ratio.

This empirical conclusion is indicative of the failure

of the standard FL scenario, in which nonzero values of

ρ0 and w0 are attributed entirely to scattering of light

carriers by impurities. Its inadequacy was revealed in

measurements [28] of the electrical resistivity of the nor-

mal state of the superconducting heavy-fermion metal

CeCoIn5 under pressure. These measurements showed

a huge variation of the residual resistivity ρ0(P ) in a

narrow region of the T−P phase diagram of this system

near a critical pressure P ∗ = 1.6GPa, even though the

impurity number remained unchanged at any applied

pressure.

In Ref. [29] such challenging behavior of CeCoIn5

was attributed to fermion condensation (FC). As indi-

cated earlier, such a state arises from a rearrangement

of the Landau state at a TQCP involving the forma-

tion of a flat band. A flat band is composed of the

totality single-particle states that belong to a portion

of the spectrum that is completely flat at T = 0, i.e.,

ǫ(p) = 0, and exhibits linear-in-T dispersion at finite

T [15–19] (for recent reviews, see [30–33]). Since quasi-

particles in this state share the same energy, one has

a situation analogous that of Bose condensation; hence

the original name fermion condensate for the flat band.

A remarkable feature of the FC/flat-band phenomenon

is an inherent dramatic enhancement of the density of

states, with a corresponding amplification of the super-

conducting critical temperature Tc in systems hosting

flat bands. This mechanism may in fact be relevant to

the recent discovery of high-Tc superconductivity in sul-

fur hydride [34].

Flat bands do provide a natural explanation of the

striking behavior seen on the disordered side of the

AF phase transition in the nonsuperfluid compound

YbRh2Si2 [35–37], where the resistivity ρ(T ) shows

linear-in-T variation over an enormous temperature

range from TN = 70mK up to at least 7 K. It must

be noted that all the numerous versions of the standard

critical-fluctuation Hertz–Millis approach fail to explain

this pivotal observation.

With regard to the fate of the WF law in electron

systems of solids possessing one or more flat bands, there

exists a universal mechanism for its violation that is ab-

sent on the FL side of the underlying topological phase

transition. This mechanism is associated with additional

contributions to the conventional FL impurity-induced

residual resistivities ρ0 and w0 that result from elastic

scattering of light carriers by the heavy quasiparticles of

flat bands, in a process analogous to elastic scattering of

light carriers by impurities. In both cases, contributions

to the damping γ(T ) of single-particle excitations are

T -independent and proportional to the density of heavy

carriers [29, 38].

Patently, if the two types of scattering were identi-

cal, the WF ratio in systems possessing flat bands would

keep the same value as in FL theory. However, this is

not the case, because the FC quasiparticles belong to the

same electron system as the normal ones. It follows that

in the case of a homogeneous charged Fermi liquid hav-

ing flat bands but containing no impurities, for which

the total electron momentum is necessarily conserved,

the solution of the kinetic equation acquires a Peierls

term δn(p) ∝ p. This implies the presence of an anal-

ogous term proportional to momentum p in the elec-

trical current J as well; accordingly, the electrical cur-

rent flows without resistivity. As a result, in the actual

case where the impurity-induced quantities ρ0 and w0

have nonzero values, ρ0 remains unchanged through the

fermion-condensation phase transition, while the ther-

mal resistivity w0, evaluated at J = 0, receives an ad-

dition contribution. This contribution, associated with

the enhancement of the damping γ(T ), is proportional

to the FC density. Thus, the WF ratio should be re-

duced from unity in charged Fermi liquids hosting flat

bands.

The same situation prevails for electron systems of

solids having flat bands. This is true despite the fact

that the electron momentum is no longer conserved due

to Umklapp processes, which provide for momentum

transfer to the crystal lattice and lead to a nonzero

residual resistivity ρ0 even in the absence of impurities.

The magnitude of ρ0 then turns out to be proportional

to the square of the Umklapp integral for e–e collisions

[23]. (Other processes, notably those involving collective

modes, are ineffective in the limit T → 0 relevant to the

WF ratio.) The magnitude of the resulting contribution

to ρ0 turns out to be rather small, confirming the valid-

ity of the above prediction of a decline of the WF ratio

in systems with the flat bands.

Let us now consider, within the flat-band scenario,

how the WF ratio evolves under decrease of the im-

purity concentration. With improvement of purification

efficiency, the influence of flat-band contributions to ρ0
and w0 continues to grow. Thus, starting at the critical

level at which flat-band contributions become compara-

ble to those from impurities, one expects to see a rapid
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enhancement of the decline of the WF ratio with further

reduction of impurity concentration.

It is illuminating to apply this flat-band/Peierls sce-

nario to assess the status of the WF law in electron

systems subject to an external magnetic field B. The

essential point is that the Peierls contribution survives

only through components of the current vector J par-

allel to the direction of the magnetic field B. One has

only to observe that this contribution is nullified if J is

perpendicular to B, since in this case the operators J

and B do not commute with each other. Thus, even if

the WF law is violated at B = 0, imposition of a mag-

netic field perpendicular to J leads to its recovery, in

agreement with experiment [39, 2, 7, 8].

Conclusions. We have proposed and explored two

different scenarios, in some sense complementary, for vi-

olation of the WF law in strongly correlated electron

systems of solids. The implicated regions of the Lifshitz

phase diagram lie in the neighborhood and on both sides

of the TQCP at which the density of states diverges and

the conventional Landau state loses its stability.

(i) Fermi-liquid side of the topological quantum crit-

ical point (TQCP): zeron scenario. We have demon-

strated that there emerges an additional channel of the

thermal conductivity that is mediated by a new branch

of collective excitations, a transverse zero-sound mode

termed the zeron. This mechanism gives rise to an en-

hancement of the WF ratio L(T )/L0 at finite tempera-

tures on this side of the TQCP, while as T goes down

to 0, so that T < Θz, the WF ratio tends to 1, and the

WF law is recovered.

(ii) Non-Fermi-liquid side of TQCP: flat-

band/Peierls scenario. A quite different mechanism

comes into play for those systems in which the topo-

logical transition leads to the formation of one or

more flat bands featuring heavy quasiparticles. In this

case an additional channel emerges in the electrical

conductivity, associated with the occurrence of a Peierls

term in the electrical current. This mechanism leads to

a suppression of the Lorenz number L(T ) at sufficiently

low temperatures, giving rise to the decline of the WF

ratio L(T → 0)/L0. In the classical temperature region

T > ΘD, this decline is eliminated, because elastic

phonon contributions to both ρ and w prevail, so that

the WF law is recovered.

The available experimental data [4, 5, 39, 7, 8] are

consistent with the phenomenological analysis presented

here.

When the paper was accepted for publication we be-

came aware of the article [40] where it is shown that

violation of the WF law can be also anticipated in ma-

terials with topologically nontrivial phases of electronic

matter.
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