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A method is developed to consider the particle-phonon coupling (PC) effects in the problem of finding

odd-even double mass differences (DMD) of magic nuclei within the approach starting from the free NN-

potential. Three PC effects are taken into account, the phonon induced interaction, the renormalization of

the “ends” due to the Z-factors and the change of the single-particle energies. We use the perturbation theory

in g2L, where gL is the vertex of the L-phonon creation. PC corrections to single-particle energies are found

self-consistently. In addition to the usual pole diagram, the phonon “tadpole” diagram is taken into account

approximately. Results for double-magic 132Sn and 208Pb nuclei show that the PC corrections make agreement

with the experimental data better.
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Recently, the semi-microscopic model developed first

for the pairing problem [1–3] was successfully applied to

the problem of finding the odd-even double mass differ-

ences (DMD) of magic nuclei [4–6]. In the pairing prob-

lem, this model starts from the Brueckner theory which

results in the BCS gap equation

∆ = VGGs, (1)

where V is a “realistic” NN -potential (the Argonne v18

in our case), and G (Gs) is the one-particle Green func-

tion without (with) pairing. In the case of direct solv-

ing this equation in a single-particle basis [7–9] for the
120Sn nucleus, a serious problem of slow convergency

exists. To overcome this problem, a two-step renormal-

ization method of solving the gap equation was used in

Refs. [1–3]. The complete Hilbert space of the pairing

problem S is split in the model subspace S0, includ-

ing the single-particle states with energies less than a

separation energy E0, and the complementary one, S′.

The gap equation is solved in the model space with the

effective pairing interaction (EPI) obeying the Bethe–

Goldstone type equation in the subsidiary space:

Veff = V + VGGVeff|S′ . (2)

1)e-mail: saper@mbslab.kiae.ru

In these calculations, the energy density functional

(EDF) by Fayans et al. [10–13] was used, which is char-

acterized by the bare mass, m∗=m. The set DF3 [11, 13]

of the EDF parameters and its modification DF3-a [14]

were employed.

In contrast, in Refs. [8, 9] an essentially non-bare ef-

fective mass of the Skyrme–Hartree–Fock method (the

SLy4 EDF [15]) was used with a dramatic suppression

of the gap ∆ values. To obtain a result close to the ex-

perimental value ∆exp ≃ 1.3MeV, the particle-phonon

coupling (PC) corrections to the BCS approximation

were introduced. In addition, the contribution of the in-

duced interaction due to exchange of high-lying collec-

tive excitations was included in [9]. High uncertainties

in a direct finding of all these corrections to the simplest

BCS scheme with bare nucleon mass were discussed in

detail in [16, 17].

The scale of these uncertainties grow with appear-

ance of the results obtained by Duguet et al. [18, 19]

for a number of nuclei with the use of the “low-k”

force Vlow-k [20, 21] which is rather soft. The quasi-

potential Vlow-k is defined in such a way that it describes

the NN -scattering phase shifts at momenta k < Λ,

where Λ is a parameter corresponding to the limiting

energy ≃ 300MeV, which is much less than the value
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of Emax = 800MeV in [8, 9] and helps to carry out

systematic calculations. The force Vlow-k vanishes for

k > Λ, so that in the gap equation one can restrict

the energy range to Emax ≃ 300MeV. Usually the low-k

force is found starting from some realistic NN -potential

V with the help of the Renormalization Group method,

and the result does not practically depend on the partic-

ular choice of V [20]. In addition, in Ref. [18] Vlow-k was

found starting from the Argonne potential v18, that is

different only a little from Argonne v14, used in Ref. [9].

Finally, in Ref. [18] the same SLy4 self-consistent basis

was used as in Ref. [9]. Thus, the inputs of the two cal-

culations look very similar, but the results turned out

to be strongly different. In fact, in Ref. [18] the value

∆BCS ≃ 1.6MeV was obtained for the same nucleus
120Sn which is already bigger than the experimental one

by ≃ 0.3MeV. In Refs. [1, 16, 17] the reasons of these

contradictions were analyzed. It turned out that these

two calculations differ in the way they take into account

the effective mass. It implies that the gap ∆ depends not

only on the value of the effective mass at the Fermi sur-

face, as it follows from the well-known BCS exponential

formula for the gap, but also on the behavior of the func-

tion m∗(k) in a wide momentum range. However, this

quantity is not known sufficiently well. An additional

problem was specified in Ref. [22] where it was found

that the inclusion of the 3-body force following from

the chiral theory [23] suppresses the gap values much

lower than the experimental ones.

To avoid uncertainties under discussion, the semi-

microscopic model was suggested [1–3] in which the EPI

(2) is supplemented with a phenomenological δ-function

addendum:

Veff(r1, r2, r3, r4) = V BCS
eff (r1, r2, r3, r4) +

+ γC0
ρ(r1)

ρ̄(0)

4∏

i=2

δ(r1 − ri). (3)

Here ρ(r) is the density of nucleons of the kind under

consideration, and γ are dimensionless phenomenologi-

cal parameters. The average central density ρ̄(0) in the

denominator of the additional term is obtained with av-

eraging the density ρ(r) over the interval of r < 2 fm.

The odd-even DMD we deal are defined in terms of

nuclear masses M(N,Z) as follows:

D+
2n(N,Z) = M(N +2, Z)+M(N,Z)− 2M(N +1, Z),

(4)

D−

2n(N,Z) = −M(N−2, Z)−M(N,Z)+2M(N−1, Z),

(5)

D+
2p(N,Z) = M(N,Z + 2) +M(N,Z)− 2M(N,Z + 1),

(6)

D−

2p(N,Z) = −M(N,Z−2)−M(N,Z)+2M(N,Z−1).

(7)

The “experimental” gap values ∆exp we mentioned

above are usually identified with a half of their value.

In magic nuclei which are non-superfluid, these odd-

even mass DMD (4)–(7) can be expressed in terms

of the same EPI (2) as the pairing gap [4–6]. It can

be easily proved starting from the Lehmann expan-

sion for the two-particle Green function K in a non-

superfluid system. In the single-particle wave functions

|1〉 = |n1, l1, j1,m1〉 representation, it reads [24]:

K34
12(E) =

∑

s

χs
12χ

s+
34

E − E
+,−
s ± iγ

, (8)

where E is the total energy in the two-particle chan-

nel and E+,−
s denote the eigen-energies of nuclei with

two particles and two holes, respectively, added to the

original nucleus. Instead of the Green function K, it

is convenient to use the two-particle interaction ampli-

tude Γ:

K = K0 +K0ΓK0, (9)

where K0 = GG. Within the Brueckner theory, the am-

plitude Γ obeys the following equation [24]:

Γ = V + VGGΓ, (10)

where V is the same NN -potential as in Eq. (1), which

does not depend on the energy. Then the integration

over the relative energy can be readily carried out in

Eq. (10):

A12 =

∫
dε

2πi
G1

(
E

2
+ ε

)
G2

(
E

2
− ε

)
=

1− n1 − n2

E − ε1 − ε2
,

(11)

where ε1,2 are the single-particle energies and n1,2 =

= (0; 1), the corresponding occupation numbers. As a

consequence, Eq. (10) reduces to the following form:

Γ = V + VAΓ. (12)

The two-particle amplitude Γ(E) possesses the same

poles E+,−
s as the Green function K. After simple ma-

nipulations [4], one can obtain the equation for the

eigenfunctions χs:

(Es − ε1 − ε2)χ
s
12 = (1− n1 − n2)

∑

34

V34
12χ

s
34. (13)

It is different from the Shrödinger equation for two in-

teracting particles in an external field only for the factor

1 − n1 − n2 which reflects the many-body character of

the problem, in particular, the Pauli principle. As in the

pairing problem, the angular momenta of two-particle
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states |12〉, |34〉 are coupled to the total angular mo-

mentum I = 0 (S = 0, L = 0).

The relevance of the same interaction Veff for these

two different problems agrees with the well-known the-

orem by Thouless [25] stating that the gap equation

reduces to the in-medium Bethe–Salpeter equation pro-

vided the gap ∆ vanishes. In our case, the homogeneous

counterpart of Eq. (12) is the Bethe–Salpeter equation

under discussion, and the Shrödinger-like equation (13)

can be obtained from it with the usual procedure. In

nuclear physics, this point was evidently first discussed

in [26], where the DMD values for double-magic nuclei

were analyzed within the theory of finite Fermi systems

[24]. In this article, the density dependent EPI was intro-

duced and arguments were found in favor of the surface

dominance in this interaction.

The direct solution of this equation is complicated

by the same reasons as for the BCS gap equation de-

scribed above. The same two-step method is used in

combination with LPA to overcome this difficulty. As a

consequence, Eq. (13) is transformed into the analogous

equation in the model space:

(Es − ε1 − ε2)χ
s
12 = (1−n1−n2)

∑

34

0
(Veff)

34
12 χs

34, (14)

where the effective interaction Veff coincides with that of

the pairing problem, Eq. (2), provided the same value of

the separation energy E0 is used. The next step consists

in the use of the ansatz (3) to take into account correc-

tions to the Brueckner theory with a phenomenological

addendum (∼ γ). These corrections are obviously the

same as discussed above for the BCS theory. In Refs. [4–

6], the semi-microscopic model was successfully applied

to non-superfluid components of semi-magic nuclei with

the same value of γ = 0.06 as for the pairing gap.

In this work, we develop a method of direct account

for the PC corrections to the DMD values, together with

possible change of the optimal value of γ. The introduc-

tion of the PC corrections to Eq. (14) consists, first, of

the change of ελ on the l.h.s. to ε̃λ=ελ+δεPC
λ and, sec-

ond, a similar change of the Veff quantity on the r.h.s.,

to Ṽeff, with the same meaning of the “tilde” symbol.

The explicit form of this PC corrected equation reads:

(Es−ε̃1 − ε̃2)χ
s
12 = (1−n1−n2)

∑

34

0 (
Ṽeff

)34

12
χs
34. (15)

Let us begin with single-particle energies. We fol-

low here the method developed in [27]. Note also that

recently PC corrections to the single-particle energies

within different self-consistent approaches were studied

in Refs. [28–31]. To find the single-particle energies with

account for the PC effects, we solve the following equa-

tion: [
ε−H0 − δΣPC(ε)

]
φ = 0, (16)

where H0 is the quasiparticle Hamiltonian with the

spectrum ε
(0)
λ and δΣPC is the PC correction to the

quasiparticle mass operator. After expanding this term

in the vicinity of ε = ε
(0)
λ one finds

ελ = ε
(0)
λ + ZPC

λ δΣPC
λλ (ε

(0)
λ ), (17)

with obvious notation. Here ZPC denotes the Z-factor

due to the PC effects,

ZPC
λ =

{
1−

[
∂

∂ε
δΣPC(ε)

]

ε=ε
(0)
λ

}−1

. (18)

Expression (17) corresponds to the perturbation the-

ory in the δΣ operator with respect to H0. In this article,

we limit ourselves to magic nuclei where the so-called

g2L-approximation, gL being the L-phonon creation am-

plitude, is, as a rule, valid. It is worth mentioning that

Eq. (17) is more general, including, e.g., g4L terms. In the

case when several L-phonons are taken into account, the

total PC variation of the mass operator in Eqs. (16)–(18)

is just the sum:

δΣPC =
∑

L

ΣPC
L . (19)

The diagrams for the δΣPC
L operator within the g2L-

approximation are displayed in Fig. 1. The first one is

Fig. 1. PC corrections to the mass operator. The gray blob

denotes the phonon “tadpole” term

the usual pole diagram, with obvious notation, whereas

the second, “tadpole” diagram represents the sum of all

non-pole diagrams of the g2L order.

In the obvious symbolic notation, the pole diagram

corresponds to δΣpole = (gL, DLGgL) where DL(ω) is

the phonon D-function. Explicit expression for the pole

term is as follows:
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δΣpole
λλ (ε) =

∑

λ1 M

|〈λ1|gLM |λ〉|2 ×

×

(
nλ1

ε+ ωL − ελ1

+
1− nλ1

ε− ωL − ελ1

)
, (20)

where ωL is the excitation energy of the L-phonon. In

the coordinate form of their creation amplitudes gL(r)

the surface peak dominates,

gL(r) = αL

dU

dr
+ χL(r), (21)

where U(r) is the nuclear mean-field potential, and the

in-volume correction χL(r) being rather small. In Fig. 2,

it is illustrated for the 3−1 -state in 208Pb. If one neglects

Fig. 2. (Color online) The vertex gL for the 3
−

1 state in
208Pb

in-volume contributions, the tadpole PC term is reduced

[27] to a simple form:

δΣtad
L =

α2
L

2

2L+ 1

3
△U(r). (22)

In this work, following to [27], we use this approxima-

tion. It is supported with an old calculation of [32] where

it was shown that the in-volume correction to the tad-

pole term in 208Pb does not exceed 10 %. For a compar-

ison, it can reach 30 % in the light nuclei 40,48Ca.

The tadpole term does not depend on the energy,

therefore the ZPC-factor (18) is determined with the

pole term only and can be found directly in terms of

the energy derivative of Eq. (20).

Let us go to PC corrections to the r.h.s. of Eq. (14).

They include the phonon induced interaction, Fig. 3,

and the “end corrections”. An example of them is given

in Fig. 4. Partial summation of such diagrams results in

the “renormalization” of ends:

|λ〉 → |λ̃〉 =
√
ZPC
λ |λ〉. (23)

Fig. 3. The phonon induced interaction

Fig. 4. An example of the PC “end” correction

In the result, we get

〈11′|Ṽeff|22
′〉 =

√
ZPC
1 ZPC

1′ ZPC
2 ZPC

2′ ×

× 〈11′|Veff + Vind|22
′〉. (24)

Remind that we deal with the channel with I= 0,

S = 0, L = 0. Hence, the states i, i′ in (24) possess the

same single-particle angular momenta, j1 = j1′ , l1 = l1′ ;

j2 = j2′ , l2 = l2′ . In this case, the explicit expression of

the matrix element of Vind is as follows:

〈11′|Vind|22
′〉 = −

2ωL√
(2j1 + 1)(2j2 + 1)

×

×

[
〈j1l1||YL||j1l1〉(gL)11′

][
〈j2l2||YL||j2l2〉(gL)22′

]∗

ω2
L − (ε2 − ε1)2

, (25)

where 〈‖YL‖〉 stands for the reduced matrix element

[33], and (gL)ii′ are the radial matrix elements of the

vertex gL(r).

The above formulas (16)–(25) were used to find from

Eq. (15) the PC corrections to the odd-even DMD values

for double-magic nuclei 132Sn and 208Pb. The Fayans

EDF DF3-a [14] was used which reproduces character-

istics of the L-phonons in these nuclei sufficiently well

[27]. As it is well known, PC corrections are impor-

tant mainly for single-particle states close to the Fermi

Письма в ЖЭТФ том 103 вып. 1 – 2 2016



Phonon-particle coupling effects in odd-even double mass differences of magic nuclei 7

Table 1. Different PC corrections to odd-even double mass differences of magic nuclei

D
(0)
2 δD2(ZPC) δD2(VPC

ind
) δD2(δεPC) δDPC

2 DPC
2 D

exp
2

132Sn-pp D−

2 3.184 −1.506 −0.015 −0.982 −1.198 1.986 2.027(160)

D+
2 −2.763 1.319 −0.250 1.710 1.494 −1.269 −1.234(6)

132Sn-nn D−

2 2.301 −0.396 0.369 −0.009 −0.161 2.140 2.132(9)

D+
2 −1.165 0.217 −0.102 −0.045 0.094 −1.071 −1.227(6)

208Pb-pp D−

2 1.680 −0.824 −0.083 0.569 −0.745 0.935 0.627(22)

D−

2 −2.286 1.049 −0.167 −0.329 0.830 −1.456 −1.1845(11)
208Pb-nn D−

2 0.778 −0.275 0.174 0.205 −0.113 0.665 0.63009(11)

D−

2 −1.156 0.443 −0.691 −0.021 0.165 −0.991 −1.2478(17)

Table 2. Difference δD2 between theoretical and experimental values of DMD for different
versions of the theory

γ = 0 γ = 0.06 (γ = 0.06)PC (γ = 0.03)PC (γ=0)PC D
exp
2

132Sn-pp −1.529 −0.641 −0.210 −0.117 −0.035 −1.234(6)
132Sn-nn 0.169 −0.390 −0.440 −0.231 0.008 2.132(9)

0.062 0.327 0.348 0.260 0.156 −1.227(6)
208Pb-pp 1.053 0.373 0.091 0.188 0.308 0.627(22)

−1.101 −0.282 0.065 −0.091 −0.271 −1.1845(11)
208Pb-nn 0.148 −0.100 −0.136 −0.060 0.035 0.63009(11)

0.092 0.427 0.428 0.349 0.257 −1.2478(17)

〈δD2〉rms 0.82138 0.39298 0.28605 0.20827 0.19323

surface. In practice, we solve the PC corrected equa-

tion (15) limiting ourselves with two shells nearby the

Fermi level. In Table 1, the effect of each PC correc-

tion to a DMD value is given separately. In this set

of calculations we put γ = 0 in Eq. (3) which deter-

mines the EPI of the semi-microscopic model, hence

D
(0)
2 means the direct prediction for the DMD of the

Brueckner theory. The next columns present separate

PC corrections to this quantity. So, the 2-nd column

shows the result of application of Eq. (24) with Vind = 0,

whereas the 3-rd one presents the effect of Vind itself

with ZPC
1 = ... = ZPC

2′ = 1. The column 4 shows the

effect of PC corrections to the single-particle energies in

Eq. (15) only. At last, column 5 presents the total PC

effect δDPC
2 = DPC

2 −D
(0)
2 , where DPC

2 (column 6) is the

solution of Eq. (15) with all PC corrections included. As

it should be, the value of δDPC
2 does not equal the sum

of the values in previous three columns because of an

interference between different PC effects. Experimental

DMD values are found from the mass table [34].

The Z-factor effect (column 2) always has the sign

opposite to that of D
(0)
2 value thus suppressing the ab-

solute value of D
(0)
2 . This is a trivial consequence of the

ZPC < 1 condition. The scale of the suppression varies

from ≃ 20% (the neutron D+
2 mode in 132Sn) to ≃ 50%

(both proton modes in 132Sn and 208Pb). It agrees with

average values of the ZPC-factors, ZPC
λ ≃ 0.7−0.9, of

these nuclei found in [27] or [35, 36]. In all cases where

the PC effect due to the induced interaction (column 3)

is big, its sign coincides with that of D
(0)
2 , i.e. it corre-

sponds to an additional attraction. Two exceptions, the

proton D−

2 mode in both nuclei, occur in the cases of

very small value of this effect, much less than that due

to the Z-factor. At last, go to the single-particle energy

effect (column 4). Here there are five cases where this

effect is rather big and three, where it is negligible. In

all the cases of the first part, this effect helps to make

agreement with the data better. The total PC correc-

tion (column 5) has always the correct sign with one

exception, the neutron D−

2 mode in 208Pb. Fortunately,

in this “bad” case the PC correction is not big and spoils

agreement not much. On the contrary, in many “good”

cases this correction is large and helps to improve the

initial D
(0)
2 value significantly. In all the cases, the PC

effect results in a suppression of the initial DMD value,

i.e. it acts qualitatively as the phenomenological term in

Eq. (3) for the EPI of the semi-phenomenological model.

This makes it reasonable to try to search a new optimal

value of the parameter γ with account for the PC effects.

Results of such attempt are given in Table 2. To

make the comparison with experiment more transpar-

ent, we present differences between each theoretical pre-

diction and the corresponding experimental value. We

exclude from the analysis one case, the proton D−

2 mode

in 132Sn, where the experimental datum does not pos-

sess sufficiently high accuracy. In the last line, we put

the rms deviation of each version of the theory from the
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data. Of course such average is not so much indicative

for so small number of averaged quantities, nevertheless

it helps to feel a tendency. The column 2 corresponding

to γ = 0.06 without PC corrections has, of course, better

accuracy than the column 1 corresponding to the pure

Brueckner theory. However, it gives way to all three next

columns corresponding different values of γ with PC cor-

rections. It is difficult to choose between two columns, 4

and 5 with γ = 0.03 and 0 correspondingly, but it looks

highly believable that the initial value γ = 0.06 of the

semi-microscopic model should be taken smaller after

explicit inclusion of the PC corrections.

To conclude, we made a self-consistent calculation of

the PC corrections to the DMD values for double-magic
132Sn and 208Pb nuclei. It makes the agreement with

the experimental data better provided the phenomeno-

logical parameter γ of the semi-microscopic model is

taken between zero and 0.03. A wider amount of nu-

clei should be analyzed with PC corrections included

for more definite conclusions on the optimal value of the

parameter γ. It can include other magic nuclei and non-

superfluid subsystems of semi-magic nuclei as well. How-

ever, a careful choice should be made of nuclei where the

perturbation theory in the PC coupling vertex is valid.
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