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Peierls distortion and electron bands in phosphorus allotropes
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A small difference between the rhombohedral phosphorus lattice (A-7 phase) and the simple cubic phase

as well as between phosphorene and the cubic structure is used in order to construct their quasiparticle band

dispersion. We exploit the Peierls idea of the Brillouin zone doubling/folding, which has been previously em-

ployed in consideration of semimetals of the V period and IV–VI semiconductors. In a common framework,

individual properties of phosphorus allotropes are revealed.
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I. Introduction. In the last decade, much progress

in study of the graphene monolayer has been achieved

[1]. Graphene turned out to be a material with re-

markable properties: the universal optical conductivity

e2/4~, light transmittance giving the fine-structure con-

stant, the Coulomb renormalization of the Fermi veloc-

ity. However, absence of a band gap does not permit

to use graphene in field-effect transistor devices. This is

the reason to seek other two dimensional materials with

sizable gap and high mobilities. One of such promised

substances becomes phosphorene, i.e., a monolayer of

black phosphorus.

Element phosphorus belongs to the same period of

the periodic table as semimetals As, Sb, and Bi and

contains two s and three p valent electrons. There

exist at least three phosphorus allotropes: simple cu-

bic (sc), rhombohedral (bismuth A-7 symmetry), and

orthorhombic (A-17). Orthorhombic black phosphorus

(BP) is the most stable allotrope at ambient pressure

and temperature. At 4.5 GPa, the structure changes

from A-17 to A-7, which transforms to the sc one at

10 GPa. There are also two phase transformations at 137

and 262 GPa. The sc allotrope possesses one remarkable

property – it becomes a superconductor with maximum

Tc = 9.5K under pressure 32 GPa [2, 3], and such high

temperature of the superconducting transition was ex-

plained in the Ref. [4] by the electron-phonon coupling.

An anisotropic optical response [5] with a high mobility

of carriers promises BP as viable linear polarizers for

applications. The high mobility, tunable bandgap, and

linear dichroism along two in-plane directions make few-

layer phosphorus a candidate for future electronics and

optoelectronics.
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Recently, the success was achieved in fabricating

field-effect transistors [6–9] based on few-layer BP. Com-

paring to graphene, BP has an advantage possess-

ing a quasiparticle band gap. The band gap value of

monolayer (0.75–2.5 eV in various calculations) tends to

smaller values (0.1–0.36 eV) in bulk BP [10–12]. The cal-

culations within the tight-binding approach [13, 14] or

modern first-principal ones [12, 15, 16] give the differ-

ent values of the band gap. For bulk BP, that is the

direct gap at the Z point [14] of the order of 0.3 eV or

the indirect band [17] between the valence-band maxi-

mum at the Z point and the conduction-band minimum

at Γ. Sometimes, the variations in the band gap value

are explained by the many-particle correlation effects

[15]. According to Ref. [18], the self-energy correction

enlarges the band gap from 0.8 to 2 eV, however, the

optical absorption peak is reduced to 1.2 eV, that can

be broadly tuned by changing the number of stacked

layers. The effective masses display anisotropy in BP.

In the one direction, both for electrons and holes, the

effective mass is of the order of the free-electron mass,

however the masses are five times lighter in other two

directions. The authors of Ref. [19] assume that the va-

lence and conduction bands have a different parity and

interact strongly to one another.

The first-principal calculations do not lead to ana-

lytic results giving the inconsistent values for a band

gap and effective masses in BP. Therefore, such calcu-

lations are usually added by the qualitative considera-

tions. By that reason, it is reasonable to use the Peiers

idea of the unit-cell doubling. As known, the crystal

structures of the V group semimetals As, Sb, and Bi

can be obtained from the sc lattice by small displace-

ments of atoms. The corresponding deformation called

as a Peierls distortion was employed for the evaluation
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of the electron dispersion in Bi and Sb as well as in IV–

VI compounds [20–23]. In this work, we take the Peierls

idea as a background in constructing an effective low-

energy Hamiltonian for phosphorus allotropes. Within a

common framework, electron band-dispersions are eval-

uated in an explicit form for the sc, A-7 allotropes, and

phosphorene.

II. Band dispersion for a semimetal with the

rhombohedral lattice and two atoms in the unit

cell. Here we consider the electron dispersion of the sc

and A-7 lattices for the elements of the V group, using

the Peierls idea of the unit-cell doubling. There are one

atom in the unit cell of the sc lattice and two atoms in

the A-7 unit cell. The correct Bloch functions of the ze-

roth approximation are constructed from the Wannier

orbitals pi(r) as a sum over the lattice sites n and two

atoms A in the unit cell as

ψi(r) =
∑

n,A

eikr
A

n pi(r− rAn ), (1)

where i = x, y, z numerates the pi orbitals. We assume

that the s orbitals are located more deeply and are sep-

arated well from the pi bands.

In the sc lattice, an atom with the coordinates

(000) has six nearest neighbors at the distance a in

±(100), ±(010), and ±(001) sites and twelve next-

nearest neighbors in the sites like (110). The electron–

lattice interaction H0 of the cubic symmetry gives the

following matrix elements between the first neighbors

ξxx = ξ0 cos kxa+ ξ1(cos kya+ cos kza) (2)

and between the next-nearest neighbors

ηxy = η0 sinkxa sin kya,

ηxx = η1 cos kya cos kza+ η2 cos kxa(cos kya+ cos kza).

(3)

Here the hopping integrals are

ξ0 = 2〈px(000)|H0|px(100)〉,

ξ1 = 2〈px(000)|H0|px(010)〉,

η0 = −4〈px(000)|H0|py(011)〉,

η1 = 4〈px(000)|H0|px(011)〉,

η2 = 4〈px(000)|H0|px(110)〉,

(4)

and the arguments of the pi orbitals indicate the sites

where these orbitals are centered. The remaining ma-

trix elements are given by cyclic permutation of the

indices. In Fig. 1, the electron dispersion is shown for

the sc lattice with ξ0 = 4 eV, ξ1 = −1 eV, η0 = −0.2

eV, η1 = η2 = 0.2 eV. If the interatomic distance a is

short enough and the nearest hopping integrals ξ0 and

Fig. 1. (Color online) Three electron bands for a metal

with a simple cubic lattice; the two-fold degenerate band

is shown in a thick line

ξ1 have a typical atomic values, such the crystal should

be a good metal. Then three valent electrons can oc-

cupied only half places in these three bands degenerate

to spin. It is not surprising that phosphorus becomes a

superconductor under pressure, when it displays the sc

structure.

At high pressure from 40 to 80 kbar, phosphorus has

the rhombohedral structure (A-7 phase). This structure

can be formed from the sc phase by a small relative

displacement of two face-centered sublattices. Thus, in

the unit cell, we get two atoms shown in Fig. 2 by the

Fig. 2. Structure of the sc and A-7 lattices; two sublattices

in A-7 are shown by crosses and empty circles, correspond-

ingly

cross and empty circles and obtained from the atoms

at the (000) and (111) sites in the cubic phase. In

the A-7 phase, their rhombohedric coordinates become

±(0.25−u, 0.25−u, 0.25−u)with u equal to several per-

cents. For bismuth and rhombohedral phosphorus, such
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a distortion is of the order 5–10 %. For instance, in bis-

muth, the angles between bonds become 57◦ instead of

60◦ in the sc phase. The Peierls distortion results in the

doubling of the unit cell volume. The primitive vectors

for the face-centered lattice are

ai = a(011), a(101), a(110),

and the primitive vectors for the reciprocal lattice write

Qi = π(−1, 1, 1)/a, π(1,−1, 1)/a, π(1, 1,−1)/a.

The Peierls distortion can be represented as a result

of the electron–lattice interactions of the rhombohedral

symmetry D3d, first, due to the sublattice shift

U(r) = u · ∇[VA(r) − VB(r)] ≡ u ·O (5)

in the (111) direction and, second, because of the defor-

mation

E(r) = εijOij(r) (6)

affecting the angles between the bonds and described by

the tensor εij .

The Hamiltonian for the face-centered lattice with

two atoms in the unit cell obtains the form

H(k) =

(

A iU

−iU AQ

)

, (7)

where A is the 3 × 3 matrix given by the matrix ele-

ments in Eqs. (2)–(4). The matrix AQ is obtained from

A by the substitution k → k+Q1+Q2+Q3. The addi-

tional contributions to the matrices A and AQ appears

from the interaction E(r), Eq. (6), and has the matrix

elements

Exy = e0 + e1(cos kxa+ cos kya) + e2 cos kza,

with the hopping integrals

e0 = εxy〈px(000)|Oxy|py(000)〉,

e1 = εxy〈px(000)|Oxy|py(100)〉,

e2 = εxy〈px(000)|Oxy|py(001)〉.

(8)

The 3× 3 matrix U has the matrix elements of the dou-

bling interaction, Eq. (5), as following

Uxx = u1 sinkxa+ u2(sin kya+ sin kza),

Uxy = u3(sin kxa+ sin kya),
(9)

where
u1 = 2〈px(000)|Ox|px(100)〉,

u2 = 2〈px(000)|Oy|py(010)〉,

u3 = 2〈px(000)|Oy|py(100)〉.

(10)

Fig. 3. (Color online) Band structure of a rhombohedral

phosphorus with two atoms in unit cell; the holes/electrons

are at the T/L points

Hamiltonian (7) gives six bands shown in Fig. 3. In

this case, we get a semimetal with holes/electrons at the

T/L points as it should be in bismuth. The following val-

ues of the hopping integral are taken (in eV): ξ0 = 4,

ξ1 = −1, u1 = 0.25, u2 = 0.15, u3 = 0.5, η0 = −0.3,

η1 = 0.15, η2 = −0.1, e0 = −0.1, e1 = 0.12, e2 = −0.4.

Another set of parameters can produce a semiconductor

with the narrow band-gap. The largest hopping integrals

ξ0 and ξ1 have the comparable values for semimetals of

the V period and for the IV–VI semiconductors [21, 22].

The values of e0, e1, e2, u1, u2, and u3 parameters must

be on the order of 0.1ξ0, because they are proportional

to the Peierls weak distortion.

The spin-orbit interaction

∆̂ = −
i

3
∆so







0 σz σy

−σz 0 σx

σy −σx 0






,

where σi are the Pauli matrices, should be added to the

matrices A and AQ for antimony and bismuth, where

∆so is of the order of ξ1. The band dispersion for the

spin-splitting ∆so = 1 eV is shown in Fig. 4.

III. Band dispersion for phosphorene. The

structure of BP consists of two puckered surfaces. One

such the surface called phosphorene is shown in Fig. 5.

Now we apply the idea of the Peierls doubling to phos-

phorene. In the A-7 case of doubling, we use the unit

cell with two atoms. However, in the unit cell of phos-

phorene, there are four atoms each with three pi bonds
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Fig. 4. (Color online) Band structure of a rhombohedral

lattice with spin-orbit interactions

Fig. 5. (Color online) Structure of phosphorene. (a) – 3D

representation; the A and B atoms belong to two planes

constituting puckered monolayer phosphoren (see text).

(b) – Top view; the a1, a2 box shows the unit cell with

four atoms

hybridized weakly with the deep s bonds. Therefore, we

should to work with the low energy Hamiltonian at least

as a 12× 12 matrix. Thus, we have to determine, first,

the symmetric prophase and, second, the doubling and

deformational potentials, Eqs. (5), (6).

The situation can be simplified, if we determine cor-

rectly the zero-order Hamiltonian. In phosphorene, each

atom is connected with the nearest-neighbors by three

pi bonds, i = x, y, z. There are two bonds [16] of 2.16 Å

and one bond of 2.21 Å, two bond angles are 103.7◦ and

one bond angle is 98.1◦. Let three pi bonds are equal in

value and the angles between the bonds are 90◦. We ob-

tain two parallel planes with the distance a between the

nearest atoms (see Fig. 6). One puckered monolayer of

Fig. 6. (Color online) Cubic prophase of phosphorene, the

pi orbitals are shown; the ΓX and ΓY directions are iden-

tical to thous in Fig. 7

phosphorene is turned to two parallel planes with two

atoms A and B in the unit cell and with the transla-

tion symmetry in x and y directions. The Hamiltonian

of the zero-order could be obtained, if we combine the

3 × 3 matrix A, connecting nearest neighbors of the A

type, with the matrix B = A, connecting the neighbors

of the B type. The matrix AB, connecting the atoms of

the A and B type, appears as well. Thus, we get the

Hamiltonian in the form of the 6× 6 matrix

A(k) =

(

A AB

A†
B

A

)

. (11)
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Fig. 7. (Color online) Band structure for the black phos-

phorus monolayer

The matrix elements of this matrix are obtained as the

hopping integrals of the cubic Hamiltonian H0 between

the pi orbitals centered on two atoms A and B:

Axx = ξ0 cos kxa+ ξ1 cos kya+ η2 cos kxa cos kya,

Ayy = ξ0 cos kya+ ξ1 cos kxa+ η2 cos kya cos kxa,

Azz = ξ1(cos kxa+ cos kya) + η1 cos kxa cos kya,

Axy = Ayx = η0 sin kxa sin kya,

Axz = Azx = Ayz = Azy = 0,

ABxx = 0.5η1 cos kya+ η2 cos kxa(cos kya+ 0.5),

AByy = 0.5η1 cos kxa+ η2 cos kya(cos kxa+ 0.5),

ABzz = 0.5ξ0 + η1 cos kxa cos kya+

+ 0.5η2(cos kxa+ cos kya),

ABxz = 0.5iη0 sin kxa,AByz = 0.5iη0 sin kya,

ABzx = −ABxz, ABzy = −AByz, ABxy = AByx = 0

(12)

with ξ and η having the same meaning as in Eq. (4).

Here we take into account that the vector k has only

two components kx and ky.

The Hamiltonian of Eq. (6) has the orthorhombic

symmetry C2h in the case of phosphorene. The corre-

sponding matrix elements

Exx = e1 cos kxa+ e2 cos kya,

Eyy = e1 cos kya+ e2 cos kxa,

Ezz = e3(cos kxa+ cos kya),

Exy = e12(cos kxa+ cos kya),

Exz = e13 cos kxa+ e23 cos kya,

Eyz = e13 cos kya+ e23 cos kxa

(13)

should be added to the matrix A.

Now we have to include the Peierls doubling. If

two primitive vectors of the cubic lattice in the x, y

plane are denoted as a(10) and a(01), then the lattice

with the doubling unit cell has the primitive vectors

a1 = a(−1, 1) and a2 = a(1, 1), these are the X and Y

directions in Fig. 6 with Y in the symmetry plane and

X along the two-fold axis of phosphorene. The primitive

vectors of the reciprocal lattice are

Q1 = π(−1, 1)/a, Q2 = π(1, 1)/a. (14)

Because the vectors k and k+Q2 are equivalent in the

Brillouin zone after doubling in the Q2 direction (this

is the Y direction in phosphorene, see Fig. 6), we have

to combine the matrices A(k), Eq. (11), and A(k +Q2)

into the 12 × 12 matrix in much the same way as in

Eq. (7). The U matrix has the form

U(k) =

(

UA 0

0 UA

)

(15)

with the matrix elements of the orthorhombic Hamilto-

nian, Eq. (5), as following:

UAxx = u1 sin kxa+ u2 sin kya,

UAyy = u1 sinkya+ u2 sin kxa,

UAzz = u3(sin kya+ sin kxa),

UAyx = UAxy = 0,

UAzx = UAxz = 0,

UAzy = UAyz = 0.

(16)

The spin-orbit interaction ∆so is sometimes pointed

out as a possible source of contradictions in the cal-

culations of the band structure. Because the spin-orbit

interaction is proportional to the ion charge squared and

∆so = 1.2 eV in bismuth, we can estimate the spin-orbit

value for BP as ∆so ≈ 0.04 eV, i.e. much smaller in

comparison with the interesting energy of the order of

0.2 eV in BP. Therefore, the spin-orbit coupling cannot

noticeably change the quasiparticle band structure in

phosphorus [11].

The band structure obtained for phosphorene is

shown in Fig. 7 with the following values of the hop-

ping integrals (in eV): ξ0 = 3.9, ξ1 = −0.68, η0 = −0.3,

η1 = 0.01, η2 = 0.25, u1 = 0.96, u2 = 0.2, u3 =

= −0.42, e1 = 0.1, e2 = −0.32, e3 = 0.1, e12 = −0.73,

e13 = −0.23, e23 = −0.3. This set gives a semiconductor

with the minimal quasiparticle band gap εg = 0.56 eV

at the Γ point. The band dispersion is more flat along

the ΓX direction than in the ΓY direction. Thus we

get the effective masses of holes m
(h)
x = 0.35m0 and

m
(h)
y = 1.04m0 corresponding with the values discussed
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in Introduction. The effective masses of electrons at Γ

have the close values.

IV. Summary. At 4.5 GPa, the phosphore struc-

ture changes from the orthorhombic (A-17) symmetry

to rhombohedral one (A-7, of bismuth type), which

transforms to the sc at 10 GPa. The structure of the

orthorhombic and rhombohedral phases differs slightly

from the more symmetrical sc structure. Therefore, their

quasiparticle dispersion can be obtained using the gen-

eral Peierls idea of the doubling distortion. We show

that in agreement with experiments, the low energy

Hamiltonian constructed in accordance with the Peierls

method gives the dispersion of a metal for the sc phase,

of a semimetal or a narrow gap semiconductor for the

A-7 phase, and of a semiconductor for phosphorene. Be-

cause of the band gap at different points in the Brillouin

zone (Γ, X , and Y ) is small, phosphorene can be trans-

formed by compression from direct band gap semicon-

ductor to indirect semiconductor or semimetal.
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