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Ionization of the final 3He+ ion during the nuclear β−-decay of the tritium atom is discussed. The velocity

spectrum of the emitted secondary electrons is derived in the explicit form. Our method allows to determine

the relative and absolute probabilities of formation of the final states in few-electron atoms which include

“free” secondary electrons moving with different velocities.
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In this study we investigate the velocity spectrum

and a few other properties of the “free” electrons emit-

ted during the nuclear β−-decay of atomic nuclei. Our

goal is to derive the closed analytical formula for the

spectral function of such secondary electrons and de-

termine the conditional and total probabilities of their

emission. As is well known the velocities of the fast

β−-electrons vβ emitted during the nuclear β−-decay

of atomic nuclei are significantly larger than typical ve-

locities of bound atomic electrons va. In light atoms we

have vβ ≥ 30va−150va. The inequality vβ ≫ va allows

one to apply the sudden approximation and analyze the

nuclear β−-decay in light atoms by calculating the over-

laps of the non-relativistic atomic wave functions. The

sudden approximation is based on the fact that the wave

function of incident atomic system does not change dur-

ing the fast process, i.e. its amplitude and phase do not

change. This means that electron density distribution in

the incident atom does not change during β−-decay of

its nucleus (see discussions in [1] and [2]). This allows

one to determine all probabilities of the bound-bound

and bound-free transitions, i.e. the pbb and pbf values.

By the transition we mean the actual transition during

the nuclear β−-decay from one bound state in the inci-

dent atom into the final (bound, or unbound) state in

the final ion.

To avoid a very general discussion with use of very

complex notations for atomic terms, let us consider the

nuclear β−-decay of the tritium atom which has only one

bound electron. Moreover, for simplicity in this study

we restrict our analysis to the case when the incident

tritium atom was in its ground 12s-state (before β−-
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decay). The nuclear β−-decay of the tritum atom pro-

ceeds in one of the following ways (see, e.g., [3, 4])

3H → 3He+ + e−(β) + ν, (1)
3H → 3He2+ + e− + e−(β) + ν, (2)

where the notation e−(β) designates the fast β−-

electron, ν denotes the electron’s anti-neutrino, while

the notation e− stands for the secondary (or slow) elec-

tron formed in the unbound spectrum during the β−-

decay of the tritum atom. Below, the electric charge

of incident nucleus (Q) is designated by the notation

Q1, while the electric charge of the final nucleus is de-

noted by the notation Q2(= Q+1). Numerical compu-

tations of the probabilities of the bound-bound transi-

tions for the process, Eq. (1), are performed since earlier

papers by Migdal (references can be found, e.g., in [2]).

In general, such calculations are simple and straight-

forward. Currently, the overall accuracy of numerical

computations of the bound-bound probabilities is rel-

atively high (see, e.g., [4–7]). For instance, by using

the explicit formulas for the one-electron wave func-

tions of the 3H atom and 3He+ ion we have found that

the total probability of the bound-bound transitions for

the process, Eq. (1), equals Pbb = 0.97372735(10) (see

Table 1). The difference between unity and Pbb value

is the total probability of the bound-free transitions

Pbf = 1− Pbb ≈ 0.02627265(10) during the nuclear β−-

decay of the tritium atom with infinitely heavy nucleus.

In many experiments it is important to know partial

probabilities pbf (p) of the bound-free transitions, rather

than the Pbf value. In earlier papers this problem has

not been solved. Therefore, at this moment we do not

know the velocity/momentum spectra of the secondary

electrons emitted during nuclear β−-decay in atoms.
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Table 1. Convergence of the total probabilities Pbb of the bound-
bound transitions during the nuclear β−-decay of the tritium
atom with an infinitely heavy nucleus

N Pbb N Pbb

100 0.97371867838323 500 0.97372684019166

1000 0.97372709722987 1500 0.97372714487989

1600 0.97372714949736 1700 0.97372715332442

∗)N is the total number of hydrogen ns-states used in calcula-
tions, n is the principal quantum number, while the notation s

corresponds to the electron angular momentum ℓ equals zero.

In this study we consider the general theory of the

bound-free transitions and derive the formulas which

allow us to evaluate the partial probabilities pbf (p) of

such transitions. We also obtain the explicit formulas

to represent the velocity/momentum spectrum of the

secondary electrons. For the tritium atom such a spec-

tral function is relatively simple and unique, but in few-

electron atoms/ions the shape and other parameters of

such a spectral function of secondary electrons depends

upon electron-electron correlations in the incident atom.

In sudden approximation the final state probability

of the process, Eq. (2), equals to the overlap integral

of the wave functions of the incident tritium atom 3H

and wave function of the final 3He2+ ion multiplied by

the wave function of the outgoing (or “free”) electron

which has a certain momentum p. The direction of the

momentum p in space coincides with the direction of

motion/propagation of the actual free electron that is

observed in experiments. Moreover, at large electron-

nucleus distances each of these free-electron wave func-

tions must be a linear combination of a plane wave and

incoming spherical wave. Functions with such an asymp-

totic at large r take the form [8] (see also § 136 in [1])

φp(r,np · nr) = Nf exp
(π

2
ζ
)

Γ(1 + ıζ)×

× 1F1

(

−ıζ, 1,−ı(p · r− pr)
)

exp[ı(p · r)], (3)

where Nf = 1−exp(−2πζ)√
2πζ

is the normalization constant,

1F1(a, b; z) is the confluent hypergeometric function and

ζ = Q2

a0p
= αQ2

γv
, where a0 = ~

2

mee2
is the Bohr radius,

α = e2

~c
is the fine structure constant, and γ is the

Lorentz γ-factor of the moving electron. The notations

p and v stand for the absolute values of the momentum

and velocity of the outgoing (or “free”) electron. Also in

this equation the two unit vectors np and nr are defined

as follows np = p

p
and nr = r

r
.

The ground 12s-state wave function of the one-

electron, hydrogen-like atom/ion is
η
√
η√
π
exp(−ηr),

where η = Q
a0

(in atomic units where ~ = 1,me = 1,

and e = 1). Below, the following system of nota-

tions is applied for the β− decaying tritium atom:

Q1 = Q = 1, η = Q1

a0

, while for the final helium ion

He+ we chose Q2 = Q + 1(= 2) and ζ = Q2

a0p
= αQ2

γv
.

The probability amplitude equals the overlap in-

tegral between the
η
√
η√
π
exp(−ηr) function and the

Nfφkl(r,np · nr) function, Eq. (3). This leads to the

following formula for the overlap integral:

I2(η) = 4π

∫

exp[ı(p · r− ηr)] ×

× 1F1

(

−ıζ, 1,−ı(p · r− pr)
)

r2dr =

= −
∂I1(η)

∂η
= 8π

η + ζp

(η2 + p2)2
exp

[

−2ζ arctan

(

η

p

)]

, (4)

where analogous integral I1(η) has been determined (an-

alytically) in [8]. The I2(η) integral, Eq. (4) (with the ad-

ditional normalization factors Nf and NH) determines

the probability amplitude of the electron ionization of

the helium-3 atom during the nuclear β± decay of the

incident hydrogen/tritium atom, which was originally in

its ground 12s-state. The momentum of the “free” elec-

tron is p and p = |p| is its absolute value. If we want to

determine the final state probabilities of atomic ioniza-

tion during nuclear β± decay of the hydrogen/tritium

atom from the excited s-states, then higher derivatives

from the I1(η) integral [8] in respect with the η variables

are needed. Finally, for the β− decay from the ground

12s-state of the 3H atom one finds the following formula

for the probability amplitude A

A = 8πNHNf

η

(

Q2

Q1
+ 1

)

(η2 + p2)2
×

× exp

[

−2

(

Q2η

Q1p

)

arctan

(

Q2η

Q1p

)]

, (5)

where NH =
√

η3

πa3

0

is the normalization constant

of the hydrogen-atom wave function, while Nf =

=
√

1−exp(−2πζ)
2πζ is the normalization constant of the

wave function which represents the “free” electron. The

expression for the infinitely small final state probability

(∆Pi→f ≃ |A|2) takes the form

∆Pi→f = |A|2p2∆p =

=
32η3

ζ

[

1− exp

(

−2π
Q2η

Q1p

)] p2η2
(

Q2

Q1

+ 1
)2

(η2 + p2)4
×

× exp

[

−4

(

Q2η

Q1p

)

arctan

(

Q2η

Q1p

)]

∆p. (6)

To produce the final expression which can be used in

calculations we have to replace here the variables η
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and ζ by the following expressions η = Q1

a0

, η
p
= αQ1

γv
,

and ζ = Q2η
Q1p

= αQ2

γv
, where Q1(= Q) is the electric

charge of the incident “bare” nucleus (or central posi-

tively charged ion) and a0 = ~
2

mee2
is the Bohr radius.

In atomic units, where ~ = 1, e = 1, and me = 1, the

Bohr radius equals unity and the ratio η
p

equals to the

ratio αQ1

γv
(since me = 1), where α = ~

2

mee2
is the fine

structure constant and v = |v| is the absolute value

of the electron’s velocity (expressed in atomic units).

The factor γ = 1
√

1− v
2

c
2

= 1√
1−α2v2

is the Lorentz γ-

factor of the moving electron. Numerically in atomic

units the electron’s velocity v cannot exceed the value

of c = α−1(≈ 137 in atomic units).

This allows one to obtain the following expression for

the v-spectral function of the secondary electron emit-

ted in the process, Eq. (2) (or v-spectrum, for short):

Se(v;Q) =
32Q1

S(Q)αQ2
×

×

[

1− exp

(

−2π
Q2α

γv

)]

(Q2
1 +Q2

2)
2γ4v3

(Q2
1 + γ2v2)4

×

× exp

[

−4

(

αQ2

γv

)

arctan

(

αQ2

γv

)]

, (7)

where the normalization constant S(Q) must be cho-

sen from the condition that integral of Se(v;Q) over v

from 0 to vmax must be equal unity. Numerical value of

this constant can be found (for each pair Q1, Q2, where

Q1 = Q and Q2 = Q + 1), by using methods of nu-

merical integration [9]. In actual applications to few-

and many-electron atoms we have to take into account

the known fact that all bound atomic electrons are non-

relativistic particles. The corresponding velocities of in-

ternal electrons v are substantially less than c
4 . For light

atoms such “atomic” velocities do not exceed the value

≈ c
5 . Moreover, in our calculations of the overlap inte-

gral both non-relativistic wave functions have been ap-

plied. It follows from here that the non- relativistic ap-

proximation is more appropriate to describe properties

of secondary electrons from Eq. (2). This means that in

Eq. (7) we have to assume that γ = 1, i.e. Eq. (7) takes

the form

Se(v;Q) =
32Q1

S(Q)αQ2
×

×

[

1− exp

(

−2π
Q2α

v

)]

(Q2
1 +Q2

2)
2v3

(Q2
1 + v2)4

×

× exp

[

−4

(

αQ2

v

)

arctan

(

αQ2

v

)]

, (8)

where v varies between 0 and vmax = 50αc (this value

of vmax can be used for any light atom and/or ion).

However, in this study we apply the spectral function,

Eq. (7).

By using the formula, Eq. (7), for the β−-decay of

the tritum atom with an infinitely heavy nucleus we

have found that S(Q) ≈ 196.611833628395. As expected

this formula contains only the absolute values of free-

electron velocity v (or momentum p) and electric charge

of the incident atomic nucleus Q. The velocity of the

fast β−-electron is not included in this formula. This

is a direct consequence of the sudden approximation

which has been used to derive the formulas, Eqs. (7) and

(8). In general, by using the known v-spectral function

we can evaluate the probability p(v) to observe a sec-

ondary electron which moves with the velocity v, where

v ≪ c(= α−1 in atomic units). In general, the integral

from the spectral function Se(v;Q) between the v1 and

v2 values (v2 > v1) gives one the probability P (v1; v2)

to detect the “free” electron with the velocity bounded

between the v1 and v2 values. This probability is normal-

ized to all unbound spectra of the final ion. All states

of the discrete spectrum are ignored during this pro-

cedure. In many actual cases, however, it is important

to determine the absolute probability P (v1; v2) of the

bound-free transitions during nuclear nuclear β−-decay,

i.e. in those cases when the states of discrete spectrum

are included in calculations of probabilities. To obtain

this value we have to apply the Pbf (or Pbb) quantity

which has beed evaluated above. Then, we can write

the following formula for the conditional probability

P (v1; v2) = PbfP (v1; v2) = (1− Pbb)P (v1; v2). (9)

Numerical values of such probabilities P (v1; v2) com-

puted with the unity step (v2 = v1 +1) can be found in

Table 2. Note that for the process, Eq. (2), the most im-

portant velocities v are located between vmin ≈ 0.4 and

vmax ≈ 3.4. Numerical values of the final state probabili-

ties determined for the different velocity intervals [v1, v2]

can be found in Table 2, where the formula, Eq. (7), is

used. In this paper we can present a very short vesrion

of this Table. For light atoms, the probabilities deter-

mined with the use of both spectral functions, Eqs. (7)

and (8) are always very close to each other. This fol-

lows from internal structure of thee functions which con-

tains an exponential “cutt-off” factor, which essentially

removes all large energies. By using the spectral func-

tions, Eqs. (7) and (8), we can determine all bound-free

transition probabilities for the β−-decay in the tritium

atom, Eq. (2).

Formulas derived in this study allows one to deter-

mine all final state probabilities for the β−-decaying tri-

tium atom. We have develop an approach which succ-

ssefully works to determine the final state probabili-

ties of the bound-free transitions during the nuclear

β−-decay of the one-electron tritium atom. Our wave
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Table 2. Probabilities of the bound-free transitions pbf (v1, v2) during the nuclear β−-decay of the tritium atom with an infinitely
heavy nucleus

v1 v2 pbf (v1, v2) v1 v2 pbf (v1, v2) v1 v2 pbf (v1, v2)

0.1 0.2 0.1887486938E-02 3.3 3.4 0.7074717265E-02 11.4 11.5 0.1329840115E-04

0.4 0.5 0.1917130375E-01 3.6 3.7 0.5015703351E-02 12.6 12.7 0.7446739450E-05

0.5 0.6 0.2681487042E-01 3.7 3.8 0.4480407262E-02 13.0 13.1 0.6206926650E-05

1.0 1.1 0.5254300663E-01 4.4 4.5 0.2096616982E-02 15.0 15.1 0.2680741819E-05

1.4 1.5 0.4992373809E-01 5.0 5.1 0.1262893513E-02 17.0 17.1 0.1277214108E-05

1.5 1.6 0.4723742821E-01 5.2 5.3 0.9451119318E-03 18.0 18.1 0.9084928397E-06

1.6 1.7 0.4416838598E-01 5.4 5.5 0.7835661935E-03 19.0 19.1 0.6574626020E-06

2.0 2.1 0.3102588126E-01 6.7 6.8 0.2570619146E-03 23.0 23.1 0.2077424148E-06

2.5 2.6 0.1798174511E-01 8.4 8.5 0.750897540E-04 35.0 35.1 0.1552228745E-07

2.7 2.8 0.1426319226E-01 9.2 9.3 0.451506651E-04 45.0 45.1 0.3080476662E-08

3.0 3.1 0.1003778633E-01 10.4 10.5 0.225258543E-04 60.0 60.1 0.4305802692E-09

3.2 3.3 0.7945901258E-02 11.0 11.1 0.163344103E-04 75.0 75.1 0.7910055696E-10

∗)Calculations are performed with the use of the formula, Eq. (7), where 0 ≤ v ≤ α−1. To obtain the absolute final state probabilities
these values must be multiplied by the additional factor Pbf ≈ 0.02627265(10).

functions of the final electron represent the actual elec-

tron which moves “free” in the field of the final He+

nucleus. The same approach can be used to derive the

explicit formulas for the final state probabilities and

velocity/momentum spectra of the secondary electrons

which arise during nuclear β−-decay of an arbitrary

few-electron atom. Preliminary investigations of such

few-electron atoms incidate clearly that spectra of sec-

ondary electrons have different forms for different few-

electron atoms/ions. The most important atomic factor

which substantially changes the actual spectra of sec-

ondary electrons emitted during nuclear β−-decay of

few-electron atoms is related to the electron-electron

correlations in the incident atom/ion.
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