Естественное сильное подавление монопольного уширения линий Мессбауэра

С. В. Карягин¹⁾

Отдел строения вещества им. Гольданского, Институт химической физики им. Семенова РАН, 119991 Москва, Россия

Поступила в редакцию 2 июля 2015 г. После переработки 16 декабря 2015 г.

Продолжено изучение естественного сильного сужения (ЕСС) линий Мессбауэра на долгоживущих изомерах. Это явление впервые корректно обнаружено в 2009 г. группой Давыдова (Письма в ЖЭТФ **90**(7), 547) и непротиворечиво объяснено в 2013 г. Карягиным (Письма в ЖЭТФ **98**(3), 197; **98**(11), 763). Таким образом, ЕСС – новый эффект, несмотря на его 36-летнюю предысторию. Поскольку ЕСС основано на коллапсе СТС как результате хаоса движений спина ядра, введены "критерии хаоса" при обменном и виртуальном механизмах коллапса. Указаны типы ядер и сред с этими механизмами. Установлено, что время жизни τ изомеров, годных для ЕСС, ограничено диффузией. Выявлен и объяснен эффект естественного сильного подавления (ниже $1/\tau \sim 10^{-2} c^{-1}$) монопольного (изомерного, химического) уширения.

DOI: 10.7868/S0370274X16030140

1. Введение. Считается [1], что в естественных условиях, т.е. без особых воздействий [2-8], ширина мессбауэровской линии всегда больше дипольдипольного (dd) уширения $\Gamma_{dd} \sim 10^4 \,\mathrm{c}^{-1}$, вызванного дипольными полями (*d*-полями) от соседних ядер. Тогда в естественных условиях применение долгоживущих изомеров ни в γ -лазере (гамма-лазере) (см. например, [2-12]), ни в γ -резонансной спектроскопии [1, 13, 14] невозможно, поскольку сечение резонансных процессов падает в $k = \Gamma \tau > 1 + \Gamma_{dd} \tau + \ldots \gg 1$ раз. Здесь Г – полная ширина линии, k – относительная полная ширина, au – время жизни изомера. Первое неравенство учитывает не только Γ_{dd} , но и уширения других типов [8]. Так, $\tau=57\,\mathrm{c}$ и $k>10^6$ для линии 88.034 кэ
В $^{109} \rm Ag.$ Дело в том, что и искусственное сужение линий на долгоживущих изомерах тоже проблематично [8]. Однако более 36 лет на ¹⁰⁹Ад в естественных условиях ставятся опыты, анализ которых дает $k \sim 10$, а не $k > 10^6$, что указывает на естественное сильное сужение (ЕСС) линии в $\sim 10^6$ раз (см. [15–18] и ссылки там). Вместе с тем факт наблюдения ЕСС в [15-17] вызывал сомнения [15, 16, 18].

Кроме того, считалось [17,18], что ЕСС достигается усреднением локальных *d*-полей в нуль из-за колебаний соседей. Это подобно сужению линий ЯМР в жидкости. Однако поскольку γ-источники в [15– 18] являлись твердыми, а не жидкими, колебания в

рядка поля Земли. Тогда выход γ-квантов для всей СТС в целом должен был бы заметно зависеть от угла ψ между H_{ex} и волновым вектором γ-кванта [21]. Однако согласно [19] СТС коллапсирует в синглет. Значит, выход γ-квантов не должен зависеть от ψ, что и доказано в [20] на базе первичных данных из [18]. Таким образом, опыты [18] согласуются с [19], а не с собственной теорией [21]. Это повышает доверие к первичным данным из [18]. Настоящая статья, развивающая идеи [19, 20], важна для понимания основ ЕСС, моделирования механизмов ЕСС и планирования экспериментов.
2. Критерии хаоса, ведущего к коллапсу СТС при обменном механизме. В [19] ЕСС объстис

них были недостаточно сильны для подавления d-

полей от соседей. Таким образом, ЕСС – вовсе не ана-

лог сужения в ЯМР. Отсутствие непротиворечивого

механизма, объясняющего ЕСС, усиливало мнение, что оно – результат ошибок. Вместе с тем т.к. в [18]

не имеется ни температурных изменений геометрии

опыта, как в [15, 16], ни нестабильностей, как в [17],

именно опыты [18] были непротиворечиво объясне-

ны в [19, 20]. Важно, что в [18] СТС-линии считали

расщепленной во внешнем магнитном поле \mathbf{H}_{ex} по-

СТС при обменном механизме. В [19] ЕСС объяснено коллапсом СТС, вызванным хаотичностью движения спина ядра при обмене *s*-электрона с вышибающими его электронами зон. Обмен ведет к флуктуациям (скачкам) контактного магнитного поля Ферми \mathbf{H}_c частоты $\nu_{\rm F} \sim 10^{16} \, \Gamma$ ц и амплитуды $|\mathbf{H}_c| \sim (10^3 - 10^6) \, \Gamma$ с. Пусть время усреднения τ_{av} на

¹⁾e-mail: akaryagina@gmail.com

порядки больше "периода" скачков $\tau_{\rm F} = 1/\nu_{\rm F}$. Тогда СТС коллапсирует в синглет, т.к. усредняются почти до нуля все сверхтонкие взаимодействия (СТВ) Е, зависящие от ориентации спина ядра: дипольные \mathbf{E}_1 , квадрупольные \mathbf{E}_2 , 2^{*L*}-польные \mathbf{E}_L . Но СТВ \mathbf{E} усредняются не точно до нуля, а "почти". Это "почти" случайно и для каждого ядра свое. Поэтому синглет уширен. Таков обменный механизм. В [19] введены квантовое среднее $\langle \hat{\mathbf{I}} \rangle$ от оператора спина ядра $\hat{\mathbf{I}}$ и единичный вектор $\mathbf{u} = \langle \hat{\mathbf{I}} \rangle / |\langle \mathbf{I} \rangle|$. Конец вектора и (именуемый в [19] и-точкой) совершает в случайно меняющемся поле \mathbf{H}_c броуновское движение по u-сфере радиуса $|\mathbf{u}| = 1$. Блуждая, u-точка может при достаточно большом au_{av} прочертить траекторию, покрывающую всю и-сферу почти равномерно. Этому мешают СТВ Е, ориентируя спин ядра и тем самым нарушая хаос его движений. Наибольшие помехи хаосу, как правило, создает дипольное СТВ \mathbf{E}_1 в локальном магнитном поле \mathbf{H}_{loc} , равном сумме медленных полей от соседних атомов, радикалов (~ $10^2 \, \Gamma c$), ядер (~ $|\mu| 10^{-1} \, \Gamma c$) и внешнего поля \mathbf{H}_{ex} . Помехи пренебрежимо малы, если за время $\tau_{\rm F} = 1/\nu_{\rm F}$ между скачками *u*-точка проходит под действием поля **H**_c в среднем во много раз больший путь, чем под действием СТВ Е. Так, для коллапса дипольного СТВ **E**₁ надо иметь $\Omega_{1c}\tau_{\rm F} \gg \Omega_{E1}\tau_{\rm F}$, т.е. $\Omega_{1c} \gg \Omega_{E1}$, где $\Omega_{1c} = |\mathbf{E}_{1c}|/I\hbar = \mu\mu_N H_c/I\hbar$ и $\Omega_{E1} = |\mathbf{E}_{1\text{loc}}|/I\hbar = \mu\mu_N H_{\text{loc}}/I\hbar$ – частоты Лармора в полях \mathbf{H}_c и \mathbf{H}_{loc} , I и μ – спин и магнитный момент ядра в ядерных магнетонах $\mu_N = 5.05 \cdot 10^{-24} \, \text{эрг}/\Gamma \text{c}.$ Для ^{109m}Ag $|\mu| \sim 4$, для ¹⁰⁹Ag $|\mu| \sim 0.1$. Обобщая "критерий хаоса" на произвольные СТВ Е, имеем

$$\Omega_{1c} \gg \Omega_E,\tag{1}$$

где $\Omega_E \sim |\mathbf{E}|/I\hbar, |\mathbf{E}|$ – максимум расщепления в СТВ **Е**. Критерий (1) равносилен малости |**E**| в сравнении с расщеплением |**E**_{1c|} в поле **H**_c. Для единообразия преобразуем главное пороговое условие коллапса (см. (10) в [19]) к виду

$$\Omega_{1c} \ge \Omega_{1c \, \text{thr}},\tag{2}$$

где $\Omega_{1c\,\text{thr}} = 2(\nu_{\rm F}/\tau_{av})^{1/2}$ – порог для Ω_{1c} . Здесь везде Ω , $|\mathbf{E}|$, $|\mathbf{H}|$ среднеквадратичны (ср.кв.). Условия (1), (2) должны выполняться для обоих уровней, "+" и "-" γ -перехода с частотами Лармора Ω_{1c+} , Ω_{E+} , Ω_{1c-} , Ω_{E-} . Коллапс СТС необходим, но не достаточен для ЕСС, т.к. [19] обменный механизм сопровождается контактным уширением $k_c = \Gamma_c \tau =$ $= (\tau |H_c||\mu|\mu_N/\hbar)/(3\tau_{av}\nu_{\rm F})^{1/2}$. При $\nu_{\rm F} = 5 \cdot 10^{16}$ Гц критерий (2) выполним для ¹⁰⁹Аg на пределе, если $H_c = 4.8 \cdot 10^4$ Гс. Тогда $k_c \sim 0.6$ для ¹⁰⁹Аg, $k_c \sim 15.6$ для ^{109m}Ag и уширение линии $k_{c\,\text{line}} = (0.6^2 + 15.6^2)^{1/2} \sim 15.6$. Уширения при коллапсе от других СТВ **E** на порядки меньше [19]. Превышение $k_{c\,\text{line}}$ над шириной в эксперименте $k_{\exp \,\text{line}} = 15.3$ [20] устранимо при замене оценок [19] точными расчетами. Это расхождение снимается также при учете в принципе возможных "виртуальных" механизмов.

3. Виртуальные механизмы коллапса СТС. Виртуальные механизмы коллапса СТС основаны на виртуальных скачках (*v*-скачках) между уровнями "+" и "-" γ -перехода. В [20] *u*-точки непосредственно до и после *v*-скачка точно совпадали. При таких "точных" *v*-скачках *u*-точка движется то при уровне "+", то при уровне "-" только под действием поля H_c . Для коллапса с таким обменно-виртуальным механизмом важны и критерий хаоса (1), и пороговое условие (6) из [20], преобразованные здесь к виду

$$\Omega_{1c\,ef} \gg \Omega_{E\,ef}, \quad \Omega_{1c\,ef} \ge \Omega_{1c\,\text{thr}}, \tag{3}$$

где $\Omega_{1c\,ef} = (\tau_{v+}\Omega_{1c+} + \tau_{v-}\Omega_{1c-})/\tau_v; \ \Omega_{E\,ef} = (\tau_{v+}\Omega_{E+} + \tau_{v-}\Omega_{E-})/\tau_v;$ порог $\Omega_{1c\,thr}$ здесь тот же, что и в (2); $\tau_v = \tau_{v+} + \tau_{v-}$ – "период" *v*-скачков; $\nu_v = 1/\tau_v$ – их "частота"; τ_{v+}, τ_{v-} – времена виртуального пребывания ядра на уровнях "+", "–", ограниченные условиями

$$\tau_{v-} \sim \hbar/E_{\gamma} \le \tau_{v+} \ll \tau = \min(\tau_+, \tau_-), \qquad (4)$$

где τ_+, τ_- – обычные времена жизни ядерных уровней "+", "-", E_{γ} – энергия γ -перехода.

Рассмотрим теперь "неточные" *v*-скачки, когда *u*точки непосредственно до и сразу после *v*-скачка отличаются на случайный вектор *v*-сдвига **v**. Пусть средний *v*-сдвиг $\mathbf{v}_{av} = 0$, а его ср.кв. значение $v \neq 0$. Средние определены по всем *v*-скачкам за время усреднения τ_{av} . Если v = 0, то мы имеем приближение точных *v*-скачков. Однако при больших v_{ε} возможен коллапс без флуктуаций \mathbf{H}_c , поскольку при $v_{\varepsilon} \neq 0$ *v*-скачки создают броуновское блуждание *u*точки с ср.кв. шагом *v*-скачка *v*, ср.кв. скоростью в шаге $w = v/\tau_v$ и коэффициентом диффузии

$$D_v = vw/2 = v^2/2\tau_v.$$
 (5)

Вероятное смещение u-точки за время $\tau_{av} \gg \tau_v$ по геодезической линии составляет угол

$$\Theta_v = (2D_v \tau_{av})^{1/2}.$$
(6)

Спроектируем блуждания *и*-точки по *и*-сфере на плоскость. Тогда траектория *и*-точки, имеющая длину $L_v \sim v \tau_{av}/\tau_v$, заполнит за время τ_{av} диск радиуса Θ_v с площадью

$$S_{vm} = \pi \Theta_v^2 = \pi \cdot 2\tau_{av} D_v = \pi \tau_{av} v^2 / \tau_v.$$
 (7)

Письма в ЖЭТФ том 103 вып. 3-4 2016

В результате u-сфера, имеющая площадь 4π рад², покрывается N_v слоями u-точек, где

$$N_v = S_{vm} / (4\pi \, \text{pag}^2) = \tau_{av} v^2 / (4\tau_v \, \text{pag}^2).$$
(8)

Чтобы *и*-точки покрыли *и*-сферу почти равномерно, ее надо покрыть не менее чем одним слоем *и*-точек, т.е. $N_v > 1$. Тогда (8) дает пороговое условие коллапса без флуктуаций **H**_c:

$$\Omega_v = v/\tau_v \ge \Omega_{v \, \text{thr}} = v_{\text{thr}}/\tau_v = 2(\nu_v/\tau_{av})^{1/2}$$
 pag, (9)

Это аналог условий (2), (3). Флуктуации \mathbf{H}_c уменьшают порог v_{thr} . Чтобы хаос *u*-точек был симметричным, шаг *v* должен во много раз превышать смещение *u*-точки под действием СТВ **E**. Отсюда возникает "виртуальный" аналог критерия хаоса (1):

$$\Omega_v \gg \Omega_{E\,ef}.\tag{10}$$

Оценим v_{\min} и $\tau_{v \max}$, при которых еще возможен коллапс СТС без механизма обмена. Из (9), (10) имеем $\tau_v \Omega_{Eef} < 2(\tau_v/\tau_{av})^{1/2}$ рад; $\tau_v < 4\tau_{av} (\operatorname{pad}/\tau_{av}\Omega_{Eef})^2$, $\tau_v < \tau_{v\max} = 4\tau_{av} (\operatorname{pad}/\tau_{av}\Omega_{Eef})^2$. Подстановка $\tau_v < \tau_{v\max}$ в (10) дает $v > v_{\min} = \tau_{v\max}\Omega_{Eef} = 4\operatorname{pad}^2/\tau_{av}\Omega_{Eef}$. Тогда уширение $\sim \Omega_{Eef}$ от СТВ Е подавляется до $\Gamma_{vE} < 2/\tau_{av}$, $k_{vE} = \Gamma_{vE}\tau < 2$ лишь неточными v-скачками, т.к.

$$\Gamma_{vE} \sim \Omega_{E\,ef} / (\tau_{av}/\tau_v)^{1/2} <$$

 $< \Omega_{E\,ef} / (\tau_{av}/\tau_{v\,\max})^{1/2} = 2/\tau_{av}.$ (11)

Так, если $\tau_{av} \sim \tau \sim 10^2 \,\mathrm{c}, \ \Omega_{E\,ef} \sim \Omega_{E\,dd} \sim 10^4 \,\mathrm{pag} \cdot \mathrm{c}^{-1}$, то $\tau_{v\,\mathrm{max}} \sim 10^{-10} \,\mathrm{c}, \ v_{\mathrm{min}} \sim 10^{-6} \,\mathrm{pag}$, $\Gamma_{v\,E} < 0.02 \,\mathrm{c}^{-1}$.

Поскольку при чистом *v*-механизме контактное поле $\mathbf{H}_c = 0$, уширение этим полем $k_c = \Gamma_c \tau = 0$. При чисто же обменном механизме имеем [19] $H_{c\varepsilon} >$ > $4.8 \cdot 10^4 \, \Gamma c$ и $k_c \sim 10 \gg k_{v E} < 2$. Таким образом, чистый *v*-механизм может дать гораздо более узкие линии, чем обменный механизм.

4. Источники остаточной ширины Γ_{exp} при ЕСС. Согласно [20] компоненты СТС-линии 88.034 кэВ ¹⁰⁹Ад в опытах [18] слиты в синглет шириной $k_{exp} = \Gamma_{exp} \tau \sim 15.3$. При ЕСС эта "остаточная" ширина состоит из ряда вкладов, не подавляемых коллапсом:

$$k_{\rm exp} = k_{\rm nat} + k_{\rm dec} + k_D + k_{ch} + \dots,$$
 (12)

где $k_{\text{nat}} = \Gamma_{\text{nat}}\tau = 1$; $\Gamma_{\text{nat}} = 1/\tau$ – естественная ширина; k_{dec} – вклад отклонений СТС от коллапса; k_D – вклад диффузии; k_{ch} – неоднородное монопольное (химическое, изомерное) уширение; многоточие

Письма в ЖЭТФ том 103 вып. 3-4 2016

обозачает другие вклады [8]. Рассмотрим эти вклады подробнее.

Уширение k_{dec} отклонениями коллапса на ядрах от идеала. Отклонения коллапса от идеала случайны, что позволило оценить уширение k_{dec} в трех вариантах. При чисто обменном механизме $k_{dec} \sim k_c \ge$ ≥ 15.6 [19]. При точном обменно-виртуальном механизме [20] $k_{dec} \sim k_c$, где $3.5/p \le k_c \le 5.7/p$, а $p \ge 1$ учитывает слабую неточность v-скачков. При сильно неточных v-скачках $k_{dec} \sim k_{vE} < 2/p'$ (см. (11)), где $p' \ge 1$ в случае примеси обменного механизма.

Уширение диффузией k_D . Уширение диффузией оценено Сингви и Сьеландером [22, 23] путем усреднения по времени $\sim \tau$ вероятности γ -перехода, модулируемой при скачковой диффузии ядра:

$$k_D \sim 2\tau K^2 D,\tag{13}$$

где $K = |\mathbf{K}| = 2\pi/\lambda = E_{\gamma}/\hbar c$ – модуль волнового вектора **K**; $\hbar c = 1.24 \cdot 10^{-4}$ эВ·см; $D = l^2/6\tau_0$ – коэффициент скачковой (само)диффузии; l – средняя длина скачка порядка постоянной решетки; τ_0 – время между скачками. Формула (13) дает лишь качественную оценку, т.к. τ_0 и l сильно зависят от концентрации вакансий и температуры. Для линии 88 кэВ ¹⁰⁹ Аg имеем $K = 7.1 \cdot 10^8 \text{ см}^{-1}$, $l \sim 4 \cdot 10^{-8} \text{ см}$. Правдоподобно, что при комнатной температуре $\tau_0 < 10^{-2} \text{ с}$. Тогда $D > 3 \cdot 10^{-14} \text{ см}^2/\text{с}$ и $k_D > 2 \cdot 10^6$, т.е. линия 88 кэВ не наблюдаема. Ранее [15–18] ненаблюдаемость этой линии при 293 K связывали только с малостью фактора Мессбауэра.

При ~4 К имеем $k_{\rm exp}$ ~ 15.3 [20], $k_D < k_{\rm exp}$ и $\tau_0 > \tau K^2 l^2 / 3k_{\rm exp} \sim 3 \cdot 10^3$ с, что на 5 порядков выше, чем τ_0 при ~ 293 К. Вместе с тем τ_0 не может бесконечно расти при стремлении температуры к 0 К из-за туннельных скачков атома между узлом и вакансией. Поэтому диффузия может мешать появлению ЕСС не только при 293 К, но и при низких температурах вплоть до 0 К.

Уширение неоднородностью химического (монопольного) сдвига k_{ch} . Химический сдвиг (химсдвиг), т.е. сдвиг центра СТС, состоит из сдвигов разной природы [8, 13, 14]. Из них основную неоднородность создает изомерный сдвиг δ . Согласно статье R.V. Parish [14]

$$\delta = 6.2 \cdot 10^7 \,\mathrm{c}^{-1} Z(d/R) (R^2/\Phi \mathrm{M}^2) (\Delta/a_0^{-3}). \tag{14}$$

Здесь $\delta = \omega_A - \omega_S$, где ω_A , ω_S – частоты γ -переходов при поглощении (A) и излучении (S) γ -квантов; $d = R_+ - R_-$; $R = (R_+ + R_-)/2$, R_+ , R_- – радиусы ядра в верхнем (+) и нижнем (-) состояниях; Z – номер химического элемента; $a_0 = 0.529 \cdot 10^{-8}$ см – радиус Бора; 1 фм = 10^{-13} см; $\Delta = \Sigma |\psi_s(0)_A|^2 - \Sigma |\psi_s(0)_S|^2$; $|\Sigma|\psi_s(0)_A|^2$, $\Sigma |\psi_s(0)_S|^2$ – суммы плотностей всех *s*электронов на поглощающем (*A*) и излучающем (*S*) ядрах. Поскольку основной вклад в Δ вносят N_s внешних *s*-электронов с главным квантовым числом *n*, имеем $\Delta \sim N_s(|\psi_{n,s}(0)_A|^2 - |\psi_{n,s}(0)_S|^2)$. Например, для Ag n = 5, $N_s = 1$; для Sn n = 5, $N_s = 2$. В (14) химсдвиг дан в с⁻¹, а в статье R.V. Parish – в мм/с.

5. Естественное сильное подавление (ЕСП) монопольного уширения. До работ [19, 20] считалось [17, 18], что при ЕСС почти вся ширина $k_{\rm exp}$ – это k_{ch} . Однако поскольку в [19] было введено уширение нового типа $k_{\rm dec} \sim 15.6$, в пределах ошибок совпадающее с $k_{\rm exp} \sim 15.3$ [20], выражение (12) дает $k_{ch} \ll k_{\rm exp}$, т.е. k_{ch} может быть на один-два порядка ниже, чем это ожидалось в [17, 18]:

$$k_{ch} = k_{exp} - k_{nat} - k_{dec} - k_D - \dots \sim$$

~ 0.1-1, $\Gamma_{ch} = k_{ch}/\tau \sim 10^{-3} - 10^{-2} \,\mathrm{c}^{-1}$. (15)

Оценка (15) неожиданно низка, т.к. подавление Γ_{ch} ниже рубежа ~ 10^{-1} с⁻¹ всегда считалось невозможным не только в естественных, но даже и в искусственных (радиочастотных [3–6], лазерных [7,8]) условиях. И вот оказывается, что этот рубеж преодолен не искусственным, а естественным путем. Таким образом, выявлен эффект естественного сильного подавления (ЕСП) монопольного уширения Γ_{ch} . Результат (15) надежен, т.к. здесь, кроме k_{dec} из k_{exp} вычитается еще и ($k_{nat} + k_D + ...$). Величина Γ_{ch} будет уточняться по мере прогресса в опытах и теории. Отметим, что кристаллохимические пути сужения [8] близки к естественным и могут подавлять Γ_{ch} .

Естественное сильное подавление, т.е. подавление Γ_{ch} намного ниже ~ 10^{-1} с⁻¹, нельзя объяснить только высокой степенью очистки источника от примесей и отжигом. Чтобы перейти к выяснению природы ЕСП, рассмотрим Γ_{ch} как ср.кв. от $\delta - \delta_{av}$, где δ_{av} – среднее по γ -источнику. Возьмем $\delta_{av} = 0$. Суть ЕСП от этого не изменится, а оценить Γ_c будет легче. Тогда

$$\Gamma_{ch} \sim [\delta_{\mathrm{Ag}}] \sim |\delta_{\mathrm{Sn}}| [\delta_{\mathrm{Ag}^*}] / |\delta_{\mathrm{Sn}^*}| = |\delta_{\mathrm{Sn}}| \times (|d/R|_{\mathrm{Ag}}/|d/R|_{\mathrm{Sn}}) (R_{\mathrm{Ag}}/R_{\mathrm{Sn}})^2 (Z_{\mathrm{Ag}}/Z_{\mathrm{Sn}}) [\Delta_{\mathrm{Ag}}] / |\Delta_{\mathrm{Sn}}|$$
(16)

где линия 88 кэВ ¹⁰⁹Ag отмечена индексом "Ag", а линия 24 кэВ Sn – индексом "Sn"; звездочкой отмечены оценки по формуле (14); $[\delta_{Ag}]$ – ср.кв. от δ_{Ag} по источнику; $|\delta_{Sn}| = 0.71 \cdot 10^8 \, c^{-1}$ – модуль химсдвига между белым и серым оловом [13,24]; $R_{Ag}^2/R_{Sn}^2 \sim (109/119)^{2/3}; |d/R|_{Ag}/|d/R|_{Sn} > 0.1.$ Качественно $[\Delta_{Ag}] \sim C[\Delta \rho / \rho]_{S,A} |\psi_{n,s}(0)_{Ag}|^2, |\Delta_{Sn}| \sim$

~ $C|\Delta\rho/\rho|_{\mathrm{Sn}} \cdot 2|\psi_{n,s}(0)_{\mathrm{Sn}}|^2$, где $[\Delta\rho/\rho]_{S,A} = [\rho_S - -\rho_A]/\rho$ – относительный ср.кв. разброс плотности ρ между S и A. Белое олово (β -Sn) плотнее серого (α -Sn) на 25 %. Поэтому $|\Delta\rho/\rho|_{\mathrm{Sn}} = |\rho_\beta - \rho_\alpha|/\rho_\beta \sim 0.25$. Оценка (2) из [19] дает $|\psi_{n,s}(0)_{\mathrm{Ag}}|^2/|\psi_{n,s}(0)_{\mathrm{Sn}}|^2 \sim (47/50)^3$. Учет всех этих сведений в (16) дает

$$\Gamma_{ch} > 5 \cdot 10^6 \,\mathrm{c}^{-1} [\Delta \rho / \rho]_{S,A} = 5 \,\mathrm{c}^{-1} [\Delta p]_{S,A} / \kappa \Gamma / \mathrm{cm}^2,$$
(17)

где $[\Delta p]_{S,A}$ – ср.кв. разброс давлений p при модуле всестороннего сжатия ~ $10^6 \,\mathrm{k\Gamma c/cm^2}$. Беря для Γ_{ch} оценку (15) и решая неравенства (17), получаем условия появления ЕСП:

$$\begin{split} [\Delta \rho / \rho]_{S,A} < 2 \cdot 10^{-10} - 2 \cdot 10^{-9}, \ [\Delta p]_{S,A} < 0.2 - 2 \, \Gamma / \text{cm}^2, \end{split} \ \ (18)$$

т.е. ЕСП есть результат ультрамалости разброса плотности и напряжения в у-источнике. Дефекты (примеси, границы зерен, дислокации и т.д.) создают разности плотностей числа ядер $\Delta \rho = \rho_A - \rho_S$. Здесь $\rho = 1/v, v$ – объем на один атом. В [18] для уменьшения концентрации дефектов источник очищался от примесей до их содержания ниже $10^{-5}\,\%$ и долго отжигался. Однако если бы материалом источника был неметалл, то эти меры не дали бы столь высокой однородности. Ее причина заключается еще и в том, что материалом источника является металл. В металле зонные электроны образуют фермижидкость, подобно смазке между слоями атомов усиливающую пластичность. Действительно, во-первых, переход электронов в зоны ослабляет силы непосредственной связи между ионами решетки, т.к. ионы связаны еще и через делокализованные электроны зон. Во-вторых, ферми-жидкость идеально пластична. В-третьих, внутри ферми-жидкости гидростатическое давление всюду одинаково. Вместе все эти свойства ведут к существенному снижению перепадов давления $|p_S - p_A|$ и плотности $|\rho_S - \rho_A|$. Следовательно, такое сглаживание неоднородностей является ферми-жидкостным. Подавлению Г_{сh} способствует также усреднение химсдвига δ по времени, т.к. пространственный разброс усредненных δ меньше разброса мгновенных $\delta(t)$. Отметим, что повышение пластичности ведет к росту диффузии. Согласно (13) при росте пластичности уменьшение k_{ch} должно сопровождаться ростом k_D . Это повышает шансы выполнимости оценок (15), (18).

6. Области поиска ЕСП и механизмов коллапса СТС. Для ЕСС одновременно нужны и коллапс СТС, и ЕСП. Однако ЕСП (см. п. 5) возможно в металлах или в особых условиях (высокое давление, сильная радиация), при которых неметалл становится металлом. Время усреднения τ_{av} , а значит,

Письма в ЖЭТФ том 103 вып. 3-4 2016

и время жизни изомера τ не очень существенны для ECП, но важны для коллапса СТС. Выбор же сред с коллапсом зависит от его механизма.

Атомы, способные к механизму обмена (*e*-атомы, e = exchange), перечислены в [19]. Вместе с тем при выборе объектов с ЕСС необходимо учитывать все вклады в $k_{\rm exp}$ (см. (12)), зависящие от строения матрицы, вмещающей *e*-атомы, давления и температуры *T*. Так, Rh представляет собой *e*-атом и на линии 24 кэВ ¹⁰³Rh ($\tau \sim 1$ ч) в металлическом родии фактор Мессбауэра $f \sim 1$ при $T \sim 293$ K. Однако поскольку при этом велико уширение диффузией ($k_D \sim 10^7$), ЕСС при 293 K не возникнет.

Механизм обмена может возникать, и когда металлическая матрица состоит только из е-атомов, и когда е-атомы – лишь примесь среди атомов металла-основы, и когда они входят в состав металлической структуры из нескольких элементов. Чтобы выполнялось условие (1), внутреннее поле H_{in} , создаваемое матрицей на е-атомах, должно быть мало по сравнению с полем H_c : $H_{in} \ll H_c$. При разбавлении е-атомов в решетке из атомов другого элемента поле H'_{in} на атомах этой решетки может быть большим, т.е. $H'_{in} \sim H_c$, и в то же время слабым на e-атомах, т.е. $H_{in} \ll H_c$. Поэтому, например, априори нельзя исключить из поиска механизма обмена металлы типа ферро- и антиферромагнетиков с еатомами. Однако этот механизм невозможен для еатомов в изоляторе (AgF, AgCl, AgBr, AgI, AgAt и т.д.).

Поиск чистого (т.е. без механизма обмена) v- механизма возможен: 1) на любых неметаллах, в том числе с e-атомами; 2) на любых металлах без eатомов. Если в таких объектах возникнет коллапс, то его происхождение только от v-скачков будет очевидным.

В принципе, коллапс и даже ЕСС возможны не только в ядерном γ -резонансе (ЯГР). Однако при этом необходимо выполнение условий типа (1)– (3), (10), что зависит от специфики резонанса. Так, из-за нарушения условий (1)–(3) полями $H_{ex} \sim$ (10^3-10^4) Гс не может быть коллапса с механизмом обмена в электронном парамагнитном и ядерном магнитном резонансах.

- R. V. Pound, *Mössbauer spectroscopy II*, ed. by U. Gonser, Berlin, Shpringer (1981), p. 31.
- Ю.А. Ильинский, Р.В. Хохлов, ЖЭТФ 65, 1619 (1973).
- В.И. Гольданский, С.В. Карягин, В.А. Намиот, Письма в ЖЭТФ 19, 625 (1974).
- 4. Ю. М. Каган, Письма в ЖЭТФ **19**, 722 (1974).
- 5. А.В. Андреев, Ю.А. Ильинский, Р.В. Хохлов, ЖЭТФ **67**, 1647 (1974).
- В. И. Гольданский, С. В. Карягин, В. А. Намиот, ФТТ 18, 2517 (1974).
- 7. С.В. Карягин, Письма в ЖТФ 2, 500 (1976).
- S. V. Karyagin, Proc. Int. Conf. on Mössbauer Spectroscopy, ed. by D. Barb and D. Jarina, Bucharest, 5–10 Sept. 1977 (1977), v.2 (Invited Lectures), p. 1.
- 9. С.В. Карягин, ЖЭТФ **79**, 730 (1980).
- 10. S. V. Karyagin, Las. Phys. 5, 343 (1995).
- 11. S. V. Karyagin, Hyp. Int. 141/142, 53 (2002).
- 12. С.В. Карягин, ЖХФ 22(5), 3 (2003).
- В. И. Гольданский, Эффект Мессбауэра и его применения в химии, Изд. АН СССР, М. (1963).
- Mössbauer spectroscopy, ed. by D.P.E. Dickson and F.J. Berry, Cambridge University Press, Cambridge, London, N.Y., New Rochelle, Melburne, Sydney (1986).
- W. Wildner and U. Gonser, J. Phys. Coll. Suppl. 40, 2 (1979).
- S. Rezaie-Serej, G. R. Hoy, and R. D. Taylor, Las. Phys. 5, 240 (1995).
- V.G. Alpatov, Yu.D. Bayukov, A.V. Davydov, Yu.N. Isaev, G.R. Kartashov, M.M. Korotkov, and V.V. Migachev, Las. Phys. 17, 1067 (2007).
- Ю. Д. Баюков, А. В. Давыдов, Ю. Н. Исаев, Г. Р. Карташов, М. М. Коротков, В. В. Мигачев, Письма в ЖЭТФ 90(7), 547 (2009).
- 19. С.В. Карягин, Письма в ЖЭТФ 98(3), 197 (2013).
- 20. С.В. Карягин, Письма в ЖЭТФ 98(11), 763 (2013).
- А.В. Давыдов, Ю.Н. Исаев, В.М. Самойлов, Изв. РАН, сер. физ. 61, 2221 (1997).
- K.S. Singwi and A.Sölander, Phys. Rev. **120**(4), 1093 (1960).
- Эффект Мессбауэра, Сб. статей, под редакцией Ю. Кагана, ИИЛ (1962).
- 24. A. J. F. Boyle, D. S. Bunbury, and C. Edwards, Proc. Phys. Soc. **79**, 416 (1962).