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We have demonstrated that the polarization of the fullerene shell considerably alters the polarization po-

tential of an atom, stuffed inside a fullerene. This essentially affects the electron elastic scattering phases as

well as corresponding cross-sections. We illustrate the general trend by concrete examples of electron scatter-

ing upon endohedrals Ne@C60 and Ar@C60. To obtain the presented results, we have suggested a simplified

approach that permits to incorporate the effect of fullerenes polarizability into the Ne@C60 and Ar@C60 po-

larization potential. By applying this approach, we obtained numeric results that show strong variations in

shape and magnitudes of scattering phases and cross-sections due to effect of fullerene polarization upon the

endohedral polarization potential.
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1. At first glance, the addition of a single relatively

small atom inside a fullerene should not affect essentially

the electron elastic scattering cross-section of the latter,

since the presence of an additional atom inside alters

negligibly the total size of the system under considera-

tion. As it was demonstrated recently in [1, 2], the quan-

tum interference changes the situation impressively, so

that the total phase δA@CN

l of the partial wave l of

an electron scattered upon endohedral A@CN is with

good accuracy equal to the sum of scattering phases δA
l

and δCN

l of electrons upon atom A, stuffed inside the

fullerene CN , and the CN itself. It means, counterintu-

itively, that a single atom contribution is quite big as

compared to the background of CN cross-section.

In [1] we have performed calculations, assuming that

the incoming electron feels the Hartree–Fock V̂HF(r) po-

tential of the atom A, as well as the static WF(r) and

polarization V pol
F (r) potentials of the CN . The inclusion

of V pol
F (r) proved to be very important, since CN is a

highly polarizable object, as compared to the atom A.

However, we know that the polarization potential

of the atom A itself modifies essentially its scattering

phases and respective cross-sections. Since the contribu-

tion of the atom’s A phase is clearly reflected in δA@CN

l ,

one has to investigate the effect of atom A polarization

potential V̂ pol
A (r) upon δA@CN

l . Therefore, we investi-

gate this effect here. This is the first aim of the present

Letter.
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Moreover, since the fullerene is a highly polarizable

object, it can affect the atom’s A polarization potential

leading to a potential that accounts for the modifica-

tion of V̂ pol
A (r) by the fullerene’s shell that we denote

V̂ pol
FA (r). Investigation of the changes that happen when

V̂ pol
A (r) is substituted by V̂ pol

FA (r) is the second aim of

this Letter.

As concrete objects of calculations we choose al-

most ideally spherical fullerene C60 and endohedrals

Ne@C60 and Ar@C60 with centrally located quite small

and spherical atoms Ne and Ar.

It is in place to remind one general property of the

behavior of scattering phases upon a static potential U .

Let the phases δl(E) as functions of energy E be nor-

malized in such a way that δl(E → ∞) → 0. If the target

consists of electrons and nuclei and exchange between

incoming and target electrons are taken into account, an

expression δl(0) = (nl + ql)π proved to be valid. Here ql
is the number of bound electron states with the angular

momentum l in the target itself, while nl is the number

of bound electron states with angular momentum l in

the system e + U [3, 4].

Therefore, the behavior of phases as functions of E

is qualitatively different in cases when we treat the tar-

get with and without taking into account the exchange,

e.g. in Hartree or Hartree–Fock (HF) approximations.

Note that in these two cases the phases deviate from

each other (in numbers of π) although the strength of

the potential is almost the same.
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In calculations presented below we treat the Ne

and Ar atom. The polarization potential V̂ pol
A (r) is cal-

culated in the random phase approximation with ex-

change (RPAE) frame [4], while C60 is represented by a

static square well potential WF(r), which parameters are

chosen to represent the experimentally known electron

affinity of C−

60, and low- and medium energy photoion-

ization cross-sections of C60 [5]. Along with WF(r) we

take into account the polarization potential V pol
F (r) of

the fullerene.

We pay special attention to the development of an

approximation that permits to calculate the atomic A

polarization potential V̂ pol
FA (r) inside the fullerenes shell,

and corresponding phase-shifts as well as cross-sections.

2. In order to obtain electron scattering phases for

a spherical endohedral, one has to solve numerically

the following equations for the radial parts of the one-

electron wave functions PA@CN

El (r)2)

[

− 1

2

d2

dr2
− Z

r
+ V̂HF(r) +WF(r) +

+ V pol
F (r) +

l(l+ 1)

2r2
− E

]

PA@CN

El (r) = 0. (1)

Here Z is the inner atom nuclear charge and V̂HF(r)

is the operator of HF non-local potential of the atom

A (see the definition in e.g. [6]). The asymptotic of

PA@CN

El (r) determines the scattering phase δA@CN

l (E)

PA@CN

El (r)
∣

∣

r→∞
≈ 1√

πp
sin

[

pr − πl

2
+ δA@CN

l (E)

]

.

(2)

Here p2 = 2E.

If one neglects −Z/r+V̂HF(r) in (1), Eqs. (1) and (2)

determine scattering function and phase shift of an elec-

tron on an empty fullerene, that is denoted as δCN

l (E)

and PCN

El (r), respectively, and as “Hartree” on Figures

that depict results.

To take into account the atomic polarization poten-

tial V̂ pol
A (r) or V̂ pol

FA (r), one has to add one of these po-

tentials to V̂ pol
F (r) in (1), thus obtaining equations for

the wave functions PA@CNA

El (r) and PA@CNFA

El (r) as well

as scattering phases δA@CNA

l and δA@CNFA

l , respectively.

3. More details on how to obtain scattering phases

numerically one can find in [6]. The choice of WF(r)

and V pol
F (r) is the same as in [1]: for WF(r) a square

2)We employ the atomic system of units, with electron mass m,

electron charge e, and Planck constant ~ equal to 1.

well and for V pol
F (r) the following expression V pol

F (r) =

= −αF/2(r
2+b2)2, where αF is the static dipole polariz-

ability of a fullerene that for C60 and a number of other

fullerenes is measured and/or calculated; b is a param-

eter of the order of the fullerenes radius R. This simple

version of V pol
F (r) is widely used in atomic scattering

calculations (see [7] and references therein).

In principal, the polarization potentials are energy-

dependent and non-local. We have an experience to de-

termine it for atoms employing perturbation theory in

inter-electron interaction and limiting ourselves by sec-

ond order perturbation theory in incoming and target

electrons interaction (see [4] and references therein).

It is then convenient to solve Eq. (1) in the inte-

gral form and in energy representation, where for partial

wave l it looks in the following way (see Ch. 3 of [4] and

references therein):

〈

El| ˆ̄Σl(E1)|E′l
〉

=
〈

El|Σ̂l(E1)|E′l
〉

+

+
∑

E′′

〈

El|Σ̂l(E1)|E′′l
〉 1

E1 − E′′ + iδ

〈

E′′l| ˆ̄Σl(E1)|E′l
〉

,

(3)

where the sum over E′′ includes also integration over

continuous spectrum.

The polarization interaction Σ̂(E) leads to an addi-

tional scattering phase shift ∆δl(E) that is connected

to the diagonal matrix element of (3):

ei∆δl(E) sin∆δl(E) =
〈

El|| ˆ̄Σl(E)||El
〉

. (4)

Instead of semi-empirical potentials, we employ here

the many-body theory approach with its diagrammatic

technique [8, 4]. The matrix elements
〈

El|Σ̂l(E1)|E′l
〉

have the name “irreducible self-energy part of the one-

electron Green’s function” [8]. This approach accounts

for non-locality and energy dependence of the polar-

ization interaction, but to be accurate enough require

inclusion of sufficient number of diagrams’ sequences.

Note that the phases determined using Eqs. (1) and (2)

or (3) and (4) are the same (see, e.g., [6] and [4]). This

was checked by us also pure numerically, by applying

both procedures to the case of and empty fullerene that

led to identical results.

It appeared, however, that at low incoming electron

energies, where the polarization interaction is partic-

ularly important, in constructing 〈El|Σ̂l(E1)|E′l〉 it is

sufficient to take into account four diagrams [4] pre-

sented by (5).
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(5)

The wavy line stands for the interelectron interaction.

In (5), we use the following notations νi = Eili. A line,

directed to the right (left), denotes electron (vacancy).

These diagrams automatically include some infinite se-

ries in electron-vacancy interaction (see Ch. 3 in [4]).

4. When we consider an electron colliding with an

endohedral, one has to take into account the contribu-

tion of the interaction between atomic and fullerenes

electrons. Diagrams (6) present examples of such inter-

action:

(6)

Here F denotes the fullerenes shell virtual excitations.

Considering the insertion of fullerenes shell virtual

excitation and estimating the corresponding contribu-

tions, one has to have in mind that between the essen-

tial for the scattering process projectile distance rp, the

fullerene radius, RF and the atomic radius, rA, the fol-

lowing inequality exists rp > RC > rA. To simplify the

problem of taking into account the mutual influence of

atomic and fullerenes electron, we enforce this inequal-

ity into rp ≫ RC ≫ rA. This permits to limit ourselves

by correcting the dipole interelectron interaction only,

substituting the Coulomb interelectron potential in the

following way: 1/|r1 − r2| → r1r2/r
3
2 for r1 ≪ r2.

The variation of the long-range dipole interelectron

interaction V1 matrix elements is taken into account

similarly to the inclusion of the polarization factor in

photoionization of endohedrals as it was demonstrated

in [9]. So, we correct them approximately, substituting

|V1|2 by

|V1|2 → |V1[1− αF(Eν1 − Eν4)/R
3
F]|2 (7)

in the first and third matrix elements of (5). The alter-

ation of the exchange second and fourth terms of (5)

requires substitution:

|V1|2 → |V1[1αF(Eν1 − Eν4)/R
3
F]×

× V1[1− αF(Eν1 − Eν2)/R
2
F]|. (8)

We left unchanged other than dipole components of

interaction matrix elements.

5. To perform calculations, we have to choose con-

crete values for the C60 potentials. The potential WF(r)

is represented by a potential well with the depth 0.52

and inner R1 (outer R2) radiuses equal to R1 = 5.26

(R2 = 8.17). Note that RF = (R1 + R2)/2. In [9] (see

also [4]) we have calculated the polarizability αF(ω).

Details on how to find
〈

El|Σ̂l(E1)|E′l
〉

and to solve

equations (3) and (4) one can find in Chap. 3 of [4].

In Fig. 1 we illustrate the results of calculations of

the scattering phases and cross-sections by the cases

of Ne@C60 and Ar@C60 (3). In Fig. 1 we present data

for the s-phases δ and their contribution to the cross-

sections σ of electron scattering upon Ar and Ar@C60.

The curves δAr and σAr represent data for e + Ar col-

lision that took into account the action of polarization

interaction (5). Data δF and σF for e+C60 are obtained

by solving (1) with the term −Z/r + V̂HF(r) neglected.

Results of RPAE calculations δAr@C60 and σAr@C60 for

e+Ar@C60 mean combination of calculating separately

polarization interaction, described by (5) for an isolated

atom Ar with solving (1). RPAEF denotes results for

δAr@C60F and σAr@C60F obtained after solving (3), with

account of (5). Here all intermediate states ν1, ν2, ν3
are solutions of (1), i.e. take into account the action of

fullerenes electron shell upon atomic A states.

The curves denoted as RPAEFA are results for

δAr@C60FA and σAr@C60FA calculations similar to the case

of RPAEF, but with polarization interaction, that along

with (5) includes, by using approximations (7) and (8),

also diagrams exemplified by (6). Fig. 2 presents similar

results, but for p-wave of the electron scattering with

Ne and Ne@C60.
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Fig. 1. (Color online) Phases and cross-sections of the s-

wave contribution in electron colissions with Ar@C60

Fig. 2. (Color online) Phases and cross-sections of the p-

wave contribution in electron colissions with Ne@C60

Note the difference between RPAE on one hand and

RPAEF and RPAEFA on the other. We see that the

inclusion of fullerene action upon the polarization inter-

action (5) is very important. Not less important for the

s-phase is the influence of fullerene polarization exem-

plified by (6) upon the interaction (5). As to the p-phase

presented in Fig. 2, the difference between RPAEF and

RPAEFA results is small.

It is remarkable that the cross-section of e+C60 col-

lision rapidly drops down with electron energy growth

for both presented in Figs. 1 and 2 phases. Starting from

0.2 Ry the contribution of stuffed atom A became com-

parable or even bigger than that of the C60 itself.

We see that the property of additivity discussed in

[1] and [2] is accurate enough only if the effect of the

fullerene shell upon atomic polarization interaction pre-

sented by (5) is small. It appeared, however, that al-

ready inclusion of polarization interaction (5), but with

endohedral instead of pure atom’s A wave functions,

considerably affects the scattering phases and cross-

sections.

Fig. 3 presents the total elastic electron scattering

Fig. 3. (Color online) Total cross-section of electron elastic

scattering upon Ne@C60 and Ar@C60

cross-sections upon Ne@C60 and Ar@C60. We have cal-

culated first three scattering phases – s, p, and d. For

considered energies, particularly below 0.3 Ry the num-

ber of included partial waves is sufficient.
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Note that as it is evident from Fig. 3, each step in

increasing the accuracy of our approach leads to promi-

nent changes in the cross-section.

We see that due to alteration of the inner atom po-

larization potential by the fullerene, accounted for in

the frames of RPAEF or RPAEFA, the cross-sections ac-

quire a very big resonance at low energy, perhaps even

at E → 0 and a deep minimum at E ≈ 0.1Ry3). Note

that all this variation of the cross-section does not exist

for pure fullerene, or in the RPAE approximation for

the endohedral. The RPAE maximum at E ≈ 0.1Ry

that is particularly big in Ne, transforms in RPAEF or

RPAEFA into a deep minimum. Note, that being quali-

tatively similar, the RPAEF and RPAEFA results essen-

tially differ.

6. Using concrete examples we have demonstrated

that the elastic scattering of electrons upon endohedrals

is an entirely quantum mechanical process, where addi-

tion of even a single atom can qualitatively alter the

multi-particle cross-section.

Even the crudest account of the fullerene influence

upon the caged atom polarization potential (that is

achieved by using endohedral’s electron wave functions

(1) to describe the intermediate states ν1, ν2, ν3 in (5)),

alters the phases and cross-sections impressively (com-

pare results for RPAE and RPAEF in Figs. 1–3).

Surprisingly enough, the fullerenes shell dynamic

polarization strongly modifies the stuffed atom polar-

ization potential. This is demonstrated by taking into

account the corrections (6)–(8) (compare results for

RPAEF and RPAEFA).

3)In atomic scattering such a minimum is called Ramsauer min-

imum.

Only further clarification of the polarization poten-

tial can permit to make a decisive conclusion on the

existence of either a low-energy scattering resonance or

an extra bound state between an incoming electron and

an endohedral exist.

We do believe that the presented results will stimu-

late theoretical and experimental research of low-energy

elastic scattering of electrons by endohedral atoms.
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