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Spin-dependent effects on vortex light beams propagating in an inhomogeneous medium are demonstrated

by solving the full three-component field Maxwell equations using the perturbation analysis. It is found that

the hybrid Laguerre–Gauss modes with polarization-orbital angular momentum (OAM) entanglement are the

vector solutions of the Maxwell equations in a graded-index medium. Focusing of linearly and circularly polar-

ized vortex light beams in a cylindrical graded-index medium is investigated. It is shown that the vortex light

beam undergoes an additional transverse force acting differently on circular polarized beams with opposite

handedness. The wave shape variation with distance taking into account the spin-orbit and nonparaxial effects

is analyzed. Effect of long-term periodical revival of wave packets due to mode interference in a graded-index

cylindrical optical waveguide is demonstrated.
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1. Introduction. In a scalar approximation the

light beam propagating in an inhomogeneous medium

is governed by diffractive and refractive forces. When

a vector wave field is considered, the influence of addi-

tional effective forces associated with the polarization

(spin angular momentum, SAM) and orbital angular

momentum (OAM) should be included. It is well es-

tablished that the polarization vector of linearly polar-

ized optical beams propagating over a spiral trajectory

undergoes the Rytov rotation [1, 2]. It is also of inter-

est to consider the inverse effect, i.e. the influence of

polarization on the trajectory and the width of a radi-

ation beam. Recently, the influence of polarization on

the trajectory of a light beam propagating in an inho-

mogeneous medium (the optical Magnus effect or spin

Hall effect) has been predicted and studied [3]. The spin

Hall effect (SHE) was predicted by Dyakonov and Perel’

[4] in solid state physics, it originates from the coupling

of the charge and spin currents due to spin-orbit in-

teraction (SOI). Note that there are analogues between

the SOI of light and the spin-orbit interaction of elec-

trons in solids [5]. In [6] spin transverse force was pro-

posed for electron spin moving in an electric field in non-

relativistic quantum mechanical limit of Dirac equation

or in semiconductor with spin-orbit coupling.

It is well known that, when a light beam is reflected

from an interface, the longitudinal shift of the gravity
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center of the beam is different for s- and p-polarized

beams [7], while the transverse shift has reverse signs in

the case of right- and left-hand circularly polarized radi-

ation [8]. Lateral and angular shifts for strongly focused

azimuthally and radially polarized beams at a dielectric

interface were shown in [9]. As demonstrated in [3, 10],

these Goos–Hanchen effects can also be observed in op-

tical waveguides. In [11] it was experimentally demon-

strated that the rotation angle of the speckle pattern

depends on the angle at which a circularly polarized

light beam is coupled into a fiber. It was shown in [12]

that spin-orbit interaction causes asymmetry effect for

depolarization of the right- and left-handed circularly

polarized light propagating in a graded-index fiber. The

depolarization is stronger if the spirality of the rays’ tra-

jectory and photons have the same signs and it is less

if they are not the same. The spin-dependent relative

shift between right- and left-hand circularly polarized

light beams propagating along a helical trajectory in a

graded-index fiber was shown in [13]. It was shown in

[14] that the propagation of the rays with right- and

left-hand circularly polarization along different trajec-

tories is due to the anisotropy of the Berry’s phase. In

[15] this effect was observed experimentally for a laser

beam propagating in the glass cylinder along the smooth

helical trajectory. This shift can be regarded as a mani-

festation of the optical Magnus effect [3] and the optical

spin-Hall effect [16, 17] which arises due to a spin-orbit

coupling.
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In this paper the influence of polarization (spin) and

OAM on a vortex light beam propagating through the

cylindrically symmetric waveguide with a gradient pro-

file of the refractive index is investigated by solving the

full three-component field Maxwell equations.

2. Model. The Maxwell equations for the electric

field E exp(−iνt) in a general inhomogeneous medium

with the dielectric constant ε(x, y) reduce to [18]:

(∇2
⊥ + k2n2)e⊥ − iβ∇⊥ez −∇⊥∇⊥e⊥ = β2e⊥,

(∇2
⊥
+ k2n2)ez + iβe⊥∇⊥ lnn2 = β2ez, (1)

where k = 2π/λ is the wavenumber and n2 (x, y) is the

dielectric permittivity of the medium, β is the propaga-

tion constant.

It is assumed that the dependence on time and

z is exp[−i(νt − βz)]. Usually the vector wave equa-

tion ∇2E + k2n2E + ∇(E∇ lnn2) = 0 is considered,

which is followed from Eqs. (1) by substituting ez =

= (i/β)(∇⊥e⊥ + e⊥∇⊥ lnn2) coming from the con-

dition div(n2E) into the first equation. Here we use

the system of Eqs. (1). Note, that this system includes

the small component ez analogically to Dirac equation

for the quasi-relativistic wave function of an electron
(

ϕ

χ

)

, where χ≪ ϕ [19].

Rewrite the system (1) in the form:

(

∇2
⊥
+ k2n2 +W0 +

1

4
P 2

)

E =

(

β − 1

2
P

)2

E, (2)

where E =







ex
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ez






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0
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









,

P =



















0 0 −i ∂
∂x

0 0 −i ∂
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i

n2
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i
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0
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











. By formally tak-

ing the square root of both sides, we have an equation

which is equivalent to the stationary Schrodinger equa-

tion for the reduced field Ψ(x, y):

ĤΨ = εΨ, (3)

where ε = δβ = kn0 − β and Ψ(x, y) are the eigen-

value and eigenfunction of the Hamiltonian, accordingly,

n0 = n(0, 0),

Ĥ = Ĥ(0) + Ĥ(1) + . . . , (4)

Ĥ(0) = H0 −R, H0 = Ĥ0 −
1

2k2n2
0

Ŵ0,

Ĥ0 = − 1

2k2n2
0

∇2
⊥
+

1

2n2
0

(n2
0 − n2),

Ĥ(1) is the nonparaxial correction to the operator of

paraxial propagation, which has the form

Ĥ(1) =
1

2
H2

0 −
1

2
R

2, R̂ =
P

2kn0
.

The procedure contains an expansion in terms of a small

parameter η = 1/kw0, where w0 is the beam spot size.

Below the effects of the order of η2 are considered.

Note that the Hamiltonian (4) can also be easily ex-

pressed by means of spherical tensor operators τ̂KQ [18].

It was shown in [20] that vector and tensor operators

completely describe the three-dimensional polarization.

The mean values t1Q = 〈τ̂1Q〉 and t2Q = 〈τ̂2Q〉 describe

the vector (rank 1) and tensor (rank 2) polarizations,

accordingly.

Consider a rotationally symmetric cylindrical waveg-

uide with a parabolic distribution of the refractive in-

dex:

n2(r) = n2
0 − ω2r2, (5)

where n0 is the refractive index on the waveguide axis,

ω is the gradient parameter, r = (x2 + y2)1/2.

The graded-index potential is chosen because in

this case the 3D polarization evolution problem can be

solved analytically.

The Hamiltonian Ĥ may be rewritten in terms of

annihilation and creation operators in cylindrical coor-

dinates [18], i.e. Ĥ0 = (ω/kn2
0)(Â

+
1 Â1 + Â+

2 Â2 + 1)Î.

The representation of the Hamiltonian via the op-

erators will allow us to calculate the matrix ele-

ments analytically. Indeed, calculating the integrals

〈v′, l′|Â1,2|v, l〉 =
∫∫

dϕrdrψ∗

v′ l′Â1,2ψvl we obtain the

following relationships defining the action of operators

on modal solutions:

Â1|v, l〉 = −
√

v − l

2
|v − 1, l+ 1〉,

Â+
1 |v, l〉 = −

√

v − l

2
+ 1|v + 1, l− 1〉,

Â2|v, l〉 =
√

v + l

2
|v − 1, l − 1〉,

Â+
2 |v, l〉 = −

√

v + l

2
+ 1|v + 1, l+ 1〉. (6)

These important relationships allow us to find the ma-

trix elements with the help of pure algebraic procedure

without the calculations of integrals. The solution of the
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unperturbed equation is described by radially symmet-

ric Laguerre–Gauss functions ψvl(r, ϕ) = |v, l〉:

ψvl(r, ϕ) =

(

kω

π

)1/2 [
p!

(p+ l)!

]1/2

(kωr2)l/2 ×

× exp

(

−kωr
2

2

)

Ll
p(kωr

2) exp(ilϕ), (7)

where v = 2p + l is the principal quantum number, p

and l are the radial and azimuthal indices, accordingly,

and l = v, v − 2, v − 4, . . . , 1 or 0, ω = 2/(kw2
0), w0 is

the radius of the fundamental mode.

The numbers v and l express the eigenvalues of

the unperturbed Hamiltonian Ĥ0|v, l〉 = (ω/kn2
0)(v +

+ 1)|v, l〉, and eigenvalues L = l/k of the angular mo-

mentum operator L̂z|v, l〉 = (l/k)|v, l〉.
There is no mode conversion at propagation if the in-

cident beam is expressed by the hybrid wave functions

consisting of transverse and longitudinal components:

Ĥ(0) =

∣

∣

∣

∣

∣

∣

∣

|vl〉
iσ|vl〉
ez

〉

=
ω

kn2
0

(v + 1)

∣

∣

∣

∣

∣

∣

∣

|vl〉
iσ|vl〉
ez

〉

, (8)

where σ = +1 and −1 correspond to right-handed and

left-handed circularly polarized beams, accordingly, and

σ = 0 corresponds to the linear polarization.

Note that the hybrid wave function (8) cannot be

factorized into the product of spin and orbital parts

since the mixing of OAM and SAM exists. Thus, the

modal solutions of the Maxwell equations in a GRIN

media are the hybrid vector Laguerre–Gauss modes with

the spin-orbit entanglement. The longitudinal field com-

ponent can be expressed through the transverse field

components, i.e. |ez〉 = (i/kn0)∇⊥e⊥.

The propagation constant correct to first-order non-

paraxial term Ĥ(1) of the Hamiltonian is given by [21]:

βvlσ = kn0

{

1− η(v + 1)−

− η2

32
[11(v + 1)2 − (l + σ)2 − 2(l + σ)σ]

}

, (9)

where η = ω/kn2
0.

3. Simulation results. Consider the incident vec-

tor vortex beams with right-circular and left-circular po-

larizations, accordingly:

〈Ψ+
0 | = (〈vl|,−i〈vl|ez) and 〈Ψ−

0 | = (〈vl|, i〈vl|ez), (10)

where |vl〉 = ψvl(r, ϕ) =
(

kω′

π

)1/2 [
p!

(p+l)!

]1/2

(kω′r2)l/2×

× exp
(

−kω′r2

2

)

Ll
p(kω

′r2) exp(ilϕ), ω′ = 2/(ka20), a0 is

the radius of a beam which is different from the radius of

the fundamental mode of the medium w0 =
√

2/(kω).

The trajectory and the width of the radiation beam

can be expressed in terms of the relevant matrix ele-

ments:

∆r2 =
〈ψ|Û+r2Û |ψ〉
〈ψ|Û+Û |ψ〉

− 〈ψ|Û+rÛ |ψ〉2

〈ψ|Û+Û |ψ〉2
, (11)

where Û = exp(−ikn0Ĥz).

Calculating the matrix elements in (11) within the

accuracy of the small parameter (ω/k)2 we obtain the

following expression for the beam radius:

〈∆r2〉⊥ ∼= v + 1

2kω

[

1− jσ

4
(ωz)2 +

1

4
(1 + 2lσ)(ωz)2

]

,

(12)

where j = l+σ is the total angular momentum, ω′ = ω.

It is followed from (12) that the beam spot radius

of the circularly polarized light does not change with

distance if the azimuthal l index is zero. It is seen that

beams with antiparallel OAM and SAM can be focused

into tighter spots than those for which these angular mo-

mentum are parallel. Difference (asymmetry) between

the spot sizes of the beams with right- and left-circularly

polarizations is given by

D = 〈∆r2〉+ − 〈∆r2〉− =
(v + l)l

4kω
(ωz)2 > 0. (13)

It is seen that the difference D increases with l. Simi-

lar result was obtained from the uncertainty-type rela-

tions between focal spot size and angular spread [22]. Al-

though the obtained solutions have obvious demonstra-

tion of the average beam radius evolution in a graded-

index fiber, the derivation of the expression for long

distances requires cumbersome calculations. A more ef-

ficient method is the use of modal expansion of the

incident beam in order to take into account the ac-

cumulative effects with distance. As was shown before

(Eq. (8)), the hybrid vortex Laguerre–Gauss functions

with polarization-orbital angular momentum entangle-

ment are the modal solutions.

The arbitrary incident beam may be expanded into

modal solutions, so the evolution of a beam in the

medium (5) can be represented as

Ψ(r, ϕ, z) =

=
∑

vlσ

avlσ

∣

∣

∣

∣

∣

∣

∣

|vl〉
iσ|vl〉
(i/kn0)∇⊥(x+ iσy)|vl〉

〉

exp(iβvlσz),

(14)

where avlσ are the coupling coefficients.
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Below only the propagating modes are considered,

the evanescent waves do not reach the far-field zone.

If the incident beam is described by the Laguerre–

Gauss function Ψ∗

v′l′σ = (1/
√
2) 〈〈v′l′|,−iσ〈v′l′|, e∗z|,

the coupling coefficients avlσ can be calculated analyti-

cally:

〈vlσ|v′lσ〉 =
(

2
√
ωω′

ω + ω′

)l+1

×

×
(

ω′ − ω

ω′ + ω

)p−p′
(

p′!(p+ l)!

(p′ + l)!p!

)1/2

P
[p−p′,l]
p′ (z), (15)

where z = 1 − 2
(

ω′
−ω

ω′+ω

)2

, P
[p−p′,l]
p′ (z) are the Ja-

cobi polynomials, ω′ = 2/ka20, ω = 2/kw2
0. The wave

shape variations with distance are determined by the

functions I⊥(r, ϕ, z) = |ψ(r, ϕ, z)|2 and Iz(r, ϕ, z) =

= |ez(r, ϕ, z)|2. Fig. 1 shows the intensity profiles of

the linearly polarized beams with different OAM in

the focal plane. The medium (5) with the gradient pa-

rameter ω = 7 · 10−3 µm−1 and the refractive index

n0 = 1.5 is considered. These parameters are reason-

able for conventional graded-index optical fibers. Here

and below the beams with wavelength λ = 0.63µm

are considered. The numerical aperture is determined

by NA = aω = n0

√
2∆, where a is the radius of the

waveguide and ∆ ≈ [n0 − n(a)]/n0. The initial beam

width or the full width at half maximum (FWHM) is

a0 = 45µm. It is seen that the intensity distributions

depend on the SAM and OAM of the incident beam.

For l = 0 the focused spot in the longitudinal field com-

ponent is splitting into two equal parts (Fig. 1b). There

is an asymmetry between the longitudinal field compo-

nent intensity distributions for the incident beams with

opposite OAM (Figs. 1d and f). Note, that there is no

such asymmetry for the transverse field components.

It is followed from the simulations (see Supplemen-

tal Material [23]) that the beams with antiparallel OAM

and SAM can achieve tighter focal spots than those for

which the signs of the helicity and the orbital angu-

lar momentum are the same. High efficiency transfer

of a strongly focused spot through optical waveguide

over large distances with a period of revival is shown.

Note that the long-term revivals of the focused spots

have very close analogue with the long-term evolution

of quantum wave packets in systems executing regular

periodic motion in the classical limit [24, 25]. The effect

of long-term revival of wave packets due to mode inter-

ference at nonparaxial propagation in a planar waveg-

uide was considered in [26]. Here, this phenomenon

is demonstrated in cylindrically symmetric waveguide,

where the long-term revival occurs due to spin-orbit and

nonparaxial effects.

Fig. 1. (Color online) Intensity profiles of the transverse

electric field component (left column) and the longitudi-

nal electric field component (right column) for the linearly

polarized incident beam in the focal plane zf = 331µm:

(a, b) – l = 0; (c, d) – l = 0, 3D intensity patterns; (e, f) –

l = 1; (g, h) – l = −1

Consider the propagation of a strongly focused

Gaussian beam in a medium (5). Note that only the

propagating modes reach the far-field zone. For the

beam with a0 ≥ λ/(2NA) all incident power is in the

propagating modes and the periodical revivals of the ini-

tial field intensity distribution occur at extremely long

distances. In Figs. 2a and b the electric field intensity
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Fig. 2. (Color online) Long-term transfer of a subwave-

length focused spot in a waveguide with ω = 0.1µm−1.

Intensity profiles of the transverse electric field component

(left column) and the longitudinal electric field component

(right column) in the focal plane z = 205mm: (a, b) –

l = 0, σ = 1; (c–f) – l = 1, σ = −1; (e, f) – 3D intensity

patterns of the intensity profiles (c) and (d), accordingly

distributions in a transverse plane z = 205mm in a

waveguide with NA = 1.0 are shown for the incident

beam with a FWHM of 176 nm. The power contained

in the propagating modes amounts to P⊥ ≈ 86% and

Pz ≈ 6.6% of the total beam power if l = 0 and

P⊥ ≈ 60% and Pz ≈ 7.3% if l = 1. Note, that the

spots and doughnut rings with a FWHM smaller than

λ/(2NA) can be transferred with the help of propagat-

ing modes (Fig. 2). It is seen that the tighter focal spots

and thinner doughnut rings can be transferred into long

distances if the vortex incident beam is considered. It

is followed from the calculations that the periodical re-

vivals of the initial field intensity distribution occur at

extremely long distances and the high efficiency trans-

fer of the subwavelength spot through optical waveguide

over large distances takes place with a period of revival.

4. Conclusion. In conclusion, propagation of vec-

tor vortex beams in an inhomogeneous medium is anal-

ysed by solving three-component field Maxwell equa-

tions. The polarization-dependent properties of the elec-

tric field intensity profiles in the focal plane are exam-

ined for the beams with OAM and SAM. The asymme-

try caused by the spin-orbit and tensor interactions of

light is demonstrated. It is shown that the beams with

antiparallel OAM and SAM can be focused into tighter

spots than those for which these angular momentum are

parallel. The fundamental effect of collapse and revival

of wave packets at the propagation in rotationally sym-

metric waveguide is examined. The long-term periodical

revival of a focused incident beam profile taking into ac-

count the spin-orbit and nonparaxial effects is demon-

strated. Due to this effect the remote subwavelength fo-

cusing of a light beam in an optical fiber can be achieved

without the use of the evanescent waves. Vector modal

solutions exhibiting entanglement between spin (polar-

ization) and OAM (wavefront vorticity) may be useful

for classical implementations of quantum communica-

tion and computational tasks [27].
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