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Two integrable cases of two-dimensional Schrödinger equation with a magnetic field are proposed. Using the

polar coordinates and the symmetrical gauge, we will obtain solutions of these equation through Biconfluent

and Confluent Heun functions. The quantization rules will be derived for both systems under consideration.
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The problem of obtaining integrable cases of the

Schrödinger equation has a long history. The number

of such cases is not very large. The most famous exam-

ples can be found in [1], see also the celebrated work by

Infeld and Hull [2] and the classic papers by Schrödinger

himself [3–5]. Among the recent studies we can highlight

[6–9]. Most of these works deal with one-dimensional

problems.

The problem of integrable cases of the two-

dimensional Schrödinger equation with an electromag-

netic field has long been studied as well, including the

celebrated “Landau levels” [1] (see, e.g., [10] and the

references therein), but it is not completely solved yet.

After the appearance of modern methods for analyzing

integrable systems, various aspects of this problem

were investigated. For instance, the class of (finite-gap)

solutions of the Schrödinger equation with a magnetic

field was studied in [11] (see also [12]). The factorization

method was used in [10] to solve this problem (see also

the references therein). The Schrödinger equation in

a magnetic field with additional linear and quadratic

integrals of motion were considered, for instance, in

[13] (also see the references therein), where several

interesting examples of such equations in different

coordinate systems were obtained.

The goal of this article is to introduce two new in-

tegrable examples of the two-dimensional Schrödinger

equation with an electromagnetic field. We integrate

these cases and describe the structure of the quantum

states in terms of the Biconfluent and Confluent Heun

functions. We consider only the discrete spectrum and

the wave functions of the corresponding Schrödinger op-

erator.
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We need some properties of the above mentioned Bi-

confluent and Confluent Heun functions, especially, the

conditions when these functions reduce to polynomials.

One can find the necessary information in many works

[14–19], but for the reader’s convenience and for further

applications, we re-obtain some of these properties in

Appendix.

The author’s work [20] contains a classification of

all two-dimensional Schrödinger operators with an ad-

ditional integral of motion quadratic in the momenta.

Shortly speaking, one can derive new examples by start-

ing from some solution of the quasi-Stäckel system (in

Stäckel coordinates) and transforming this solution into

the usual Cartesian coordinates. However, it is a non-

trivial problem to distinguish the examples which are

interesting from the physical standpoint, because of the

large number of parameters contained in the classifica-

tion results. We postpone the comprehensive analysis

of this problem for the future work. At the moment,

we present just two particular examples with a reduced

set of parameters. Namely, we consider the Schrödinger

operator in the usual form

Ĥ =
1

2m

(

−i~∇−
e

c
A
)2

+ u(r, φ), Ĥψ = Eψ, (1)

where the vector potential A and the potential u pre-

sented below contain three independent parameters: the

length a, a dimensionless parameter ǫ, and parameter k

which is integer in the case of the discrete spectrum.

Example 1. Repulsive potential. Let us consider

the example defined by the vector potential and poten-

tial

Aφ =
c~

2ea2
r

(

ǫ+ 3
r2

a2

)

, Ar = 0,

u = −
~
2

2ma2

(

2
r6

a6
+ ǫ

r4

a4
+ 2k

r2

a2

)

,

(2)
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and the energy

E =
~
2

2ma2
λ. (3)

We calculate a magnetic field

B =
c~

ea2

(

ǫ+ 6
r2

a2

)

.

At a first glance, the situation looks dangerous, because

the potential in (2) is strongly repulsive. However, it

turns out that the contribution of the magnetic field

prevails the contribution of the potential. A method to

obtain an appropriate wave function is the following.

1. We substitute into (1) the wave function of the

form

ψ = e−
r
4

8a4 e−ǫ r
2

4a2 rleilφw(r), (4)

where l ≥ 0. The equation for w is solved in terms the

Biconfluent Heun function

w(r) = HeunB

(

l, ǫ, 3l+ 2k,−ǫl− λ,
r2

2a2

)

(5)

with the parameters α = l, β = ǫ, γ = 3l + 2k,

δ = −lǫ− λ, while its second linearly independent solu-

tion is irregular in the point r = 0. The requirement of

the regularity of the HeunB function (5) in the whole

range of definition implies that it must be a polynomial

(see [18] and citations therein for more details). The

polynomiality conditions are given in Appendix.

The condition (23) in this case becomes l+k = n+1.

Thus, k ≤ n+1. We note that in this example det(An+1)

is a polynomial in λ of degree n + 1 and the condition

det(An+1) = 0 defines n+1 values λi (i = 1, 2, ..., n+1)

and therefore n+ 1 energy levels Ei by formula (3).

To obtain the corresponding wave function, we sub-

stitute λ = λi into the matrix An+1, compute n + 1

eigenvectors pi = (pi0, p
i
1, ..., p

i
n) of this matrix and ob-

tain the polynomials wi(r) = P i
n(

r2

2a2 ), where P i
n =

=
n
∑

j=0

pijz
j. Finally, we substitute wi(r) into formula (4)

in order to obtain n+ 1 wave functions ψi.

At the moment, we have described the quantum

states at fixed n (or fixed l = n + 1 − k). In order to

obtain the full picture, we have to fix the Hamiltonian

parameter k, to consider all possible non-negative inte-

gers l or n = k − 1, k, k + 1, k + 2, ... and to obtain an

infinite set of “blocks” which contain n + 1 energy lev-

els and wave functions for each permissible n ≥ k − 1.

Notice, that i is an “internal” index for each n.

It is very important that only real roots λ of Eq. (24)

in this example are physical and belong to the discrete

spectrum as well as corresponding energies E and the

wave functions ψ. Therefore we must choose only these

roots.

Thus, we obtain a rather complicated structure of

the quantum (discrete) states, which is non-typical for

the quantum mechanics. Such structure is similar for all

cases under consideration.

All wave functions (4) under consideration are

strongly localized in the length scale of a by the

quadratic on r magnetic field in this example.

We note that the diagonals of the matrix An+1 (22)

in this example are defined by the following sequences:

aj = λ− ǫ(2j + 1), j = 0, 1, ..., n, (6)

bj = 2[j(j + n− k+3)+ n− k+2], j = 0, 1, ..., n− 1,

cj = 4(n− j), j = 0, 1, ..., n− 1.

2. The other possible substitution is

ψ = e−
r
4

8a4 e−ǫ r
2

4a2 rle−ilφw(r), (7)

where l ≥ 0 as before. This gives us the following regular

part of solution

w(r) = HeunB

(

l, ǫ,−3l+ 2k, ǫl− λ,
r2

2a2

)

. (8)

Therefore, α = l, β = ǫ, γ = −3l+2k, δ = −ǫl−λ. The

condition (23) in this case becomes −2l + k = n + 1.

Thus, k ≥ n+1, the Hamiltonian parameter k must be

a natural number and k−n− 1 must be a non-negative

even integer.

Subsequent consideration of this case is the same as

in a previous case except for the choice of the permissi-

ble n: n ≥ 0, n = k− 1, k− 3, k− 5, ... . We choose only

real λ in this case as well as in previous one.

The diagonals of the matrix An+1 (22) in this case

are defined by the sequences

aj = λ− ǫ(k − n+ 2j), j = 0, 1, ..., n, (9)

bj = j(2j − n+ k + 3)− n+ k + 1, j = 0, 1, ..., n− 1,

cj = 4(n− j), j = 0, 1, ..., n− 1.

Example 2. Non-rational case. This is defined

by the vector potential and potential

Aφ = −
c~

e
k

a

r
√
r2 + a2

, Ar = 0,

u =
~
2

8ma2

[

3a4

(r2 + a2)2
− ǫ

a2

r2 + a2

]

,

(10)

and the energy of the form

E = −
~
2

2ma2
χ2. (11)
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The magnetic field is equal to

B = k
c~

e

a

(r2 + a2)3/2
.

It is interesting that the full magnetic flux through the

whole plane is Φ = k 2π~c
e , that is, it is an even multiple

of the quantum flux.

Let us use the change of variables

t =
1

2a
(a+

√

r2 + a2). (12)

We solve Eq. (1) with potentials (10) in order to obtain

two linearly independent solutions which can be regu-

lar, but not simultaneously, because the condition (30)

differs in these cases. We will consider both possibilities

separately.

In the first case, we obtain the wave function

ψ = eilφ
√
2t− 1 t

k−l

2 (t− 1)
k+l

2 e2χt ×

× HeunC

[

4χ,−l+ k, k + l, 0,
1

2
(k2 − l2) +

+
1

4
(ǫ+ 1)− χ2, t

]

. (13)

Notice, that k+ l is a non-negative integer, because the

solution must be regular at the point t = 1 (r = 0). The

condition (30) in this case becomes n + k + 1 = 0. It

means that k is a negative integer. We substitute the

parameters of HeunC function as well as the necessary

condition n = −k − 1 into (29) in order to obtain the

diagonals of the matrix An+1:

aj = χ[χ+ 2(2j − n− l)] + l2 − n2 −

− n− j(j − 2n− 1)−
1

4
(1 + ǫ), j = 0, 1, ..., n, (14)

bj = (j + 1)(j − n− l), j = 0, 1, ..., n− 1,

cj = 4(n− j)χ, j = 0, 1, ..., n− 1.

The function det(An+1) is a polynomial in χ of degree

2(n+1) and the condition det(An+1) = 0 defines 2(n+1)

values of χ. We must choose only negative ones in order

to obtain the regular (exponentially decreasing with a

distance) wave functions. Only quantum states with the

negative χ belong to the discrete spectrum.

In this case we obtain the infinite set of matrices

An+1 of the same size n+ 1 = −k, where the permissi-

ble l are:

l = −k, 1− k, 2− k, ...

The procedure to obtain the energy levels and wave

function is the same as in the previous example except

for the definition of the energy levels which are given by

(11).

The scale of change of the wave function is a
|χ| and

can be arbitrary a priori.

In the second case, we obtain the wave function

in the form

ψ = eilφ
√
2t− 1 t

l−k

2 (t− 1)
k+l

2 e2χt ×

× HeunC

[

4χ, l− k, k + l, 0,
1

2
(k2 − l2) +

+
1

4
(ǫ+ 1)− χ2, t

]

. (15)

We note that k+ l is a non-negative integer, because the

point t = 1 (r = 0) must be regular, as before. The con-

dition (30) in this case takes the form n+ l+1 = 0. This

means that l must be a negative integer and therefore

k must be natural number. We substitute the param-

eters of HeunC function as well as necessary condition

l = −n − 1 into (29) to obtain the diagonals of the

matrix An+1:

aj = χ[χ+ 2(2j − k − n)]− j(j − 2n− 1) +

+ n+
1

4
(3− ǫ), bj = (j + 1)(j − n− k),

(16)

cj = 4(n− j)χ.

In this case, we obtain a finite set of the matrices An+1

with the permissible n:

n ≥ 0, n = k − 1, k − 2, ..., 0.

The procedure to obtain the energy levels (by formula

(11) in this case) and the wave function is same as in

the previous example, as well.

We must choose only negative χ to obtain the quan-

tum states of the discrete spectrum as well as in the

previous case.

We denote that values of the discrete spectrum and

the corresponding wave functions can be obtained only

numerically. We postpone the numerical analysis of this

problem for the future work.

Conclusion. In this article, we have considered two

absolutely different integrable cases of two-dimensional

quantum mechanics with the electromagnetic field. Both

cases reveal the rich and complicated structure of the

quantum states. These examples were integrated by use

of the Confluent and Biconfluent Heun functions. In our

opinion, the Heun function and its four confluent forms

will be the main special functions of the 21st century.

We expect that many problems of quantum mechanics,

as well as other applications, will be resolved in terms

of these transcendents. However, many results can be

obtained only numerically due to the complicated prop-

erties of the Heun functions (e.g. calculation of large
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determinants and solution of the corresponding eigen-

value problems, as in our case).

The approach proposed in this paper is based on

the property of quantum Liouville integrability. We

hope that it can be applied for a wide range of two-

dimensional quantum mechanical problems.

The author thanks V.E. Adler, I.V. Kolokolov, and

all participants of the mathematical physics seminar at

the L.D. landau Institute for Theoretical Physics for the

useful discussions. This research was supported in part

by the Russian Foundation for Basic Research (Grant

# 16-01-00289).

Appendix. HeunB function. The Biconfluent Heun

function satisfies the following equation:

BHE = y′′(z) +

(

−2z − β +
1 + α

z

)

y′(z) +

+

{

γ − α− 2−
1

2z
[(1 + α)β + δ]

}

y(z) = 0. (17)

Its general solution is

y(z) = C1HeunB(α, β, γ, δ, z) +

+ C2HeunB(−α, β, γ, δ, z)z−α. (18)

Our aim here is to derive the necessary and sufficient

conditions for the function HeunB(α, β, γ, δ, z) to be

polynomial. To do this in a most convenient way, let

us denote

HeunB(α, β, γ, δ, z) = Pn(z) =

n
∑

j=0

pjz
j, (19)

then we obtain the following recurrent relation for the

coefficients pj :

RB(j) = cj−1pj−1 + ajpj + bjpj+1 = 0, (20)

where
aj = −[δ + β(2j + α+ 1)],

bj = 2[j(j + α+ 2) + α+ 1],

cj = 2(γ − α− 2j − 2).

(21)

We compute all pj starting from the initial values p−1 =

= 0, p0 = 1. Then, the condition bn+1 = 0 is equivalent

to vanishing of the determinant of the following three-

diagonal matrix:

An+1 =





















a0 b0 0 · · · 0

c0 a1 b1 · · · 0

0 c1 a2 · · ·
...

...
...

...
. . . bn−1

0 0 · · · cn−1 an





















. (22)

The second necessary condition can be derived by the

following trick. We substitute y(z) = zn to (17) and

calculate the numerator (polynomial) of the obtained

expression. The vanishing of the leading term of this

polynomial implies the condition γ − α = 2(n + 1).

In this case, if the matrix An+1 is degenerate then

bn+1 = 0, bn+2 = 0.

Now, we can formulate the following statement.

Statement 1. The function HeunB(α, β, γ, δ, z)

equals to a polynomial Pn(z) of degree n if and only

if the following two conditions are satisfied:

γ − α = 2(n+ 1), (23)

det(An+1) = 0. (24)

HeunC function. The Confluent Heun function sat-

isfies the equation

CHE = y′′(z) +

(

α+
β + 1

z
+
γ + 1

z − 1

)

y′(z) +

+

(

µ

z
+

ν

z − 1

)

y(z) = 0, (25)

where µ = 1
2 (α−β−γ+αβ−γβ)−η, ν = 1

2 (α+β+γ+

+γα+γβ)+δ+η. Then general solution of this equation

is

y(z) = C1HeunC(α, β, γ, δ, η, z) +

+ C2HeunC(α,−β, γ, δ, η, z)z−β. (26)

Let HeunC(α, β, γ, δ, η, z) = Pn(z),

Pn(z) =

n
∑

j=0

pjz
j, (27)

then we obtain the following recurrent relation for the

coefficients pj :

RC(j) = cj−1pj−1 + ajpj + bjpj+1 = 0, (28)

where

aj = µ− j(j − α+ β + γ + 1), bj = (j + 1)(j + β + 1),
(29)

cj = (n− j)α.

The same scheme as in the previous section brings us to

the following statement.

Statement 2. The function HeunC(α, β, γ, δ, η, z)

equals to a polynomial Pn(z) of degree n if and only if

the following two conditions are satisfied:

δ = −
[

n+ 1 +
1

2
(β + γ)

]

α, (30)

det(An+1) = 0. (31)
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