Эффект увлечения экситонов поверхностной звуковой волной

 $B. M. Ковалев^{+*1}, A. B. Чаплик^{+\times}$

⁺Институт физики полупроводников им. Ржанова СО РАН, 630090 Новосибирск, Россия

*Новосибирский государственный технический университет, 630073 Новосибирск, Россия

×Новосибирский государственный университет, 630090 Новосибирск, Россия

Поступила в редакцию 9 декабря 2014 г.

Излагается теория эффекта увлечения экситонов поверхностной волной Релея при температурах выше температуры конденсации экситонного газа, а также при нулевой температуре, когда наиболее ярко проявляются эффекты бозе-эйнштейновской конденсации экситонного газа. При высоких температурах вычислена величина тока акустического увлечения в экситонном газе с учетом экситон-экситонного взаимодействия. Показано, что для типичных экспериментальных параметров ток увлечения (при заданной интенсивности поверхностной акустической волны – ПАВ) не зависит от частоты акустической волны, а взаимодействие экситонов приводит к экранированию возмущения, вызванного ПАВ, вследствие чего с ростом плотности экситонов ток уменьшается экспоненциально быстро. При низких температурах при наличии конденсата ток увлечения конденсатных частиц имеет резонансный характер при приближении скорости боголюбовских возбуждений к скорости акустической волны, а величина тока линейна по частоте ПАВ. Ток увлечения надконденсатных частиц имеет пороговый характер: надконденсатные частицы увлекаются волной при скорости акустической волны, превышающей скорость боголонов. Величина надконденсатного тока обратно пропорциональна частоте акустической волны.

DOI: 10.7868/S0370274X15030091

1. Введение. Эффекты акустоэкситонного взаимодействия экспериментально изучаются как в системах с непрямыми в пространстве экситонами в структурах с двойными квантовыми ямами (КЯ) [1, 2], так и в полупроводниковых микрорезонаторах [3], в которых объектом воздействия со стороны поверхностной акустической волны (ПАВ) являются гибридные экситон-фотонные моды – экситонные поляритоны. Во втором случае непосредственно с ПАВ взаимодействуют входящие в поляритон электрон и дырка, т.е. прямой в пространстве экситон. Основное внимание во многих экспериментальных работах по экситонным и экситон-поляритонным газам уделяется вопросу бозе-эйнштейновской конденсации (БЭК) этих возбуждений [4-7]. Наличие в экситонном газе фазового перехода детектируется по линии экситонной люминесценции, резкое уменьшение ширины которой интерпретируется как появление в нем когерентного состояния - конденсата. Сказанное относится к равновесной системе. Очевидно, что фазовый переход экситонов должен проявляться и в отклике экситонного газа на внешние возмущения. Недавно мы теоретически показали [8, 9], что для регистрации фазового перехода экситонов может использо-

ваться ПАВ, поглощение которой в экситонном газе выше и ниже критической температуры конденсации экситонов T_c различно. Такая регистрация фазового перехода является опосредованной: непосредственно измеряться должны характеристики ПАВ. В настоящей работе мы демонстрируем проявление фазового перехода экситонов в состояние БЭК непосредственно в токе увлечения экситонов поверхностной акустической волной. Токи (fluxes) экситонов или экситонных поляритонов можно измерять непосредственно по интенсивности люминесценции в различных точках транспортного канала образца [1, 2]. Мы получим выражения для тока увлечения экситонов при высоких (выше T_c) и при нулевых температурах, что позволит нам выявить различия в эффекте акустоэкситонного увлечения при переходе через точку конденсации. Отметим, что мы будем рассматривать баллистический режим движения экситонов, т.е. предполагать выполнение неравенства $\omega \tau \gg 1$, где τ – время релаксации экситонов на примесях, а ω – характерная частота внешнего возмущения (частота ПАВ). Диффузионный режим ($\omega \tau \ll 1$) требует анализа экситон-примесного рассеяния и будет рассмотрен в другой работе.

Изучаемая структура представляет собой двойную квантовую яму на поверхности подложки, кото-

¹⁾e-mail: vadimkovalev@isp.nsc.ru

рую для простоты будем считать изотропной (рис. 1). Будем полагать, что экситоны представляют собой

Рис. 1. Схематическое изображение структуры двойной квантовой ямы с дипольными экситонами

жесткие диполи, ориентированные вдоль направления роста структуры и имеющие дипольный момент $\mathbf{p} = (0, 0, ed)$, где e – модуль заряда электрона, d – расстояние между квантовыми ямами. Такая модель игнорирует внутренние степени свободы экситона и движение электрона и дырки поперек слоев, а также подразумевает, что звуковая волна и температура не возбуждают внутреннего движения в экситоне, т.е. выполняется соотношение $e^2/a_{\rm B} \gg \max[T, \omega]$. Здесь ω – частота ПАВ, T – температура, $a_{\rm B}$ – боровский радиус экситона.

Для определенности мы будем рассматривать волну Релея, распространяющуюся по поверхности подложки и характеризующуюся двумя скоростями: продольной c_l и поперечной c_t [10]. Взаимодействие ПАВ и экситонов осуществляется по механизму деформационного потенциала. Вектор смещения точек среды $\mathbf{u}(\mathbf{r}, t)$ удовлетворяет уравнению [10]

$$\ddot{\mathbf{u}} = c_t^2 \Delta \mathbf{u} + (c_l^2 - c_t^2) \text{grad div } \mathbf{u}.$$
(1)

В геометрии рис. 1 решение уравнения (1) для поверхностной волны Релея, распространяющейся в направлении оси x, имеет вид $u_x(x,z) = u_x(z)e^{ikx-i\omega t}$, $u_y = 0, u_z(x,z) = u_z(z)e^{ikx-i\omega t}$, где

$$u_{z}(z) = -i\kappa_{l}Be^{\kappa_{l}z} - ikAe^{\kappa_{t}z},$$

$$u_{x}(z) = kBe^{\kappa_{l}z} + \kappa_{t}Ae^{\kappa_{t}z},$$

$$\kappa_{l} = \sqrt{k^{2} - \omega^{2}/c_{l}^{2}}, \quad \kappa_{t} = \sqrt{k^{2} - \omega^{2}/c_{t}^{2}}.$$
(2)

Будем полагать, что влияние ПАВ на экситонный газ является малым возмущением. В этом случае обратным влиянием экситонного газа на распространение ПАВ можно пренебречь. Для нахождения амплитуд A, B в (2) пишем граничные условия для свободной поверхности: $\sigma_{ij}\tau_j = 0$, где τ_j – вектор нормали к поверхности упругой среды. Граничные усло-

Письма в ЖЭТФ том 101 вып. 3-4 2015

вия позволяют выразить одну амплитуду через другую: $B/A = -2\sqrt{1-\xi^2}/(2-\xi^2)$, где ξ – постоянная, характеризующая дисперсию волны Релея, $\omega = c_t \xi k$ (детали см. в [10]). Оставшаяся же свободная амплитуда задается источником (генератором) звуковых волн на подложке. Энергия взаимодействия экситона с акустической волной запишется в виде $U = \lambda_e (\operatorname{div} \mathbf{u})_{z=0} + \lambda_h (\operatorname{div} \mathbf{u})_{z=d} \approx (\lambda_e + \lambda_h) (\operatorname{div} \mathbf{u})_{z=0}$, где λ – постоянная деформационного потенциала соответствующей частицы. В последнем равенстве мы учли тот факт, что для реальных систем $\kappa_{l,t}d \ll 1$. Таким образом, взаимодействие экситон–ПАВ в действительной форме запишется следующим образом:

$$U(\mathbf{r},t) = U_{\mathbf{k},\omega}e^{i\mathbf{k}\mathbf{r}-i\omega t} + U^*_{\mathbf{k},\omega}e^{-i\mathbf{k}\mathbf{r}+i\omega t},$$
$$U_{\mathbf{k},\omega} = iB\frac{\omega^2}{2c_l^2}(\lambda_e + \lambda_h),$$
(3)

где $\mathbf{k} = (k, 0, 0)$ – волновой вектор ПАВ. Подчеркнем, что в рамках подхода деформационного потенциала экситоны взаимодействуют лишь с продольной компонентой звуковой волны (поэтому в энергии остается только постоянная B), поскольку поперечная удовлетворяет соотношению div $\mathbf{u}_t = 0$. Постоянную Bудобно выразить через интенсивность ПАВ I_0 , которую определим следующим образом:

$$I_0 = c_t \xi \rho \int_{-\infty}^0 \left[|\dot{u}_x(x,z)|^2 + |\dot{u}_z(x,z)|^2 \right] dz, \qquad (4)$$

где ρ – плотность материала подложки. Используя (2) и (3), получаем

$$|U_{\mathbf{k},\omega}|^{2} = \omega \frac{(\lambda_{e} + \lambda_{h})^{2}}{4\rho c_{l}^{2}\chi(\xi)} I_{0},$$

$$\chi(\xi) = \frac{(2 - \xi^{2})^{3}}{4(1 - \xi^{2})^{3/2}} + \frac{2 - c_{t}^{2}\xi^{2}/c_{l}^{2}}{\sqrt{1 - c_{t}^{2}\xi^{2}/c_{l}^{2}}}.$$
(5)

Установив явную форму потенциала деформационного взаимодействия ПАВ с экситоном, переходим к расчету тока увлечения.

2. Высокие температуры, $T > T_c$. При высоких температурах ($T > T_c$) функция Грина экситонов удовлетворяет следующему уравнению:

$$\left[i\partial_t - \frac{\mathbf{p}^2}{2M} + \mu - U(x) - g\delta n(x)\right]G(x, x') = \delta(x - x').$$
(6)

Здесь и далее для краткости используется обозначение $x = (\mathbf{r}, t)$. В уравнении (6) $M = m_e + m_h$ масса экситона, U(x) – взаимодействие (3), μ – химический потенциал экситонов. Последнее слагаемое

Рис. 2. Диаграммное представление вклада второго порядка в функцию Грина экситонов. Волнистые линии представляют экситон-экситонное взаимодействие, штриховые – взаимодействие с ПАВ. К треугольным диаграммам следует добавить такую же сумму с заменой **k** → −**k**, $\omega_n \rightarrow -\omega_n$

в квадратных скобках – экситон-экситонное взаимодействие, записанное в рамках подхода среднего поля. Будем считать взаимодействие контактным. Постоянную g можно оценить как $g \sim 2\pi e^2 d/\varepsilon$. Величина $\delta n(x)$ представляет собой отклонение плотности экситонов от равновесного значения. Будем искать решение уравнения (6) итерациями по U(x). Представляя $G(x, x') - G^0(x - x') = \delta G^{(1)}(x, x') +$ $+ \delta G^{(2)}(x, x') + ...$ и $\delta n(x) = \delta n^{(1)}(x) + \delta n^{(2)}(x) + ...,$ в первом порядке получаем

$$\delta G^{(1)}(x, x') = \int dy G^0(x-y) \left[U(y) + g \delta n^{(1)}(y) \right] G^0(y-x').$$
(7)

Это уравнение позволяет найти поправку первого порядка к плотности, используя соотношение для бозечастиц (в мацубаровском представлении $x = (\mathbf{r}, \tau)$): $\delta n^{(1)}(x) = -\delta G^{(1)}(x, x)$. Используя и далее в расчете технику Мацубары, получаем

$$\delta n^{(1)}(\mathbf{r},t) = \delta n^{(1)}_{\mathbf{k},\omega_n} e^{i\mathbf{k}\mathbf{r}-i\omega_n t} + \delta n^{(1)}_{-\mathbf{k},-\omega_n} e^{-i\mathbf{k}\mathbf{r}+i\omega_n t},$$

$$\delta n^{(1)}_{\mathbf{k},\omega_n} = \frac{\Pi_{\mathbf{k},\omega_n} U_{\mathbf{k},\omega_n}}{1 - g\Pi_{\mathbf{k},\omega_n}};$$
(8)

$$\Pi_{\mathbf{k},\omega_n} = -\sum_{\mathbf{p}} \frac{f_{\mathbf{p}+\mathbf{k}} - f_{\mathbf{p}}}{i\omega_n + E_{\mathbf{p}} - E_{\mathbf{p}+\mathbf{k}}},$$

где $E_{\mathbf{p}} = \mathbf{p}^2/2M - \mu$ – энергия экситонов, $f_{\mathbf{p}} = [\exp(E_{\mathbf{p}}/T) - 1]^{-1}$ – равновесная функция распределения экситонов.

Усредненная по времени плотность тока экситонов выражается через поправку второго порядка к функции Грина (см. диаграммы на рис. 2). Прямым вычислением можно показать, что первая диаграмма дает нулевой вклад в плотность тока увлечения. Оставшиеся диаграммы дают

$$\mathbf{j} = -i \frac{|U_{\mathbf{k},\omega_{\mathbf{n}}}|^2 \left[\mathbf{D}(\mathbf{k},\omega_n) + \mathbf{D}(-\mathbf{k},-\omega_n)\right]}{(1 - g\Pi_{\mathbf{k},\omega_n})(1 - g\Pi_{-\mathbf{k},-\omega_n})}, \qquad (9)$$

где

$$\mathbf{D}(\pm \mathbf{k}, \pm \omega_n) =$$

$$= T \sum_{\omega_m, \mathbf{p}} \frac{\mathbf{p}}{M} G_0^2(\mathbf{p}, \omega_m) G_0(\mathbf{p} \pm \mathbf{k}, \omega_m \pm \omega_n). \quad (10)$$

Учитывая равенство $\frac{\mathbf{p}}{M}G_0^2(\mathbf{p},\omega_n) = \nabla_{\mathbf{p}}G_0(\mathbf{p},\omega_n)$ и интегрируя по частям в (10), получаем

$$\mathbf{D}(\pm \mathbf{k}, \pm \omega_n) =$$

= $\mp \nabla_{\mathbf{k}} \int \frac{d\mathbf{p}}{(2\pi)^2} T \sum_{\omega_m} G_0(\mathbf{p}, \omega_m) G_0(\mathbf{p} \pm \mathbf{k}, \omega_m \pm \omega_n).(11)$

Здесь мы воспользовались тем, что $\nabla_{\mathbf{p}}G_0(\mathbf{p} \pm \mathbf{k}) = \pm \nabla_{\mathbf{k}}G_0(\mathbf{p} \pm \mathbf{k})$. Вычисляя сумму по ω_m , можно убедиться в том, что выражение, стоящее под знаком градиента, представляет собой (с обратным знаком) поляризационный оператор $\Pi_{\mathbf{k},\omega_n}$ в (8). Учитывая очевидную четность $\Pi_{-\mathbf{k},\omega_n} = \Pi_{\mathbf{k},\omega_n}$ и выполняя аналитическое продолжение на действительную ось $\pm i\omega_n \to \omega \pm i\delta$, получаем

$$\mathbf{j} = |U_{\mathbf{k},\omega}|^2 \frac{i\nabla_{\mathbf{k}} \left[\Pi_{\mathbf{k},\omega}^R - \Pi_{\mathbf{k},\omega}^A\right]}{(1 - g\operatorname{Re}\Pi_{\mathbf{k},\omega}^R)^2 + g^2(\operatorname{Im}\Pi_{\mathbf{k},\omega}^R)^2}, \qquad (12)$$

где $\Pi^{R(A)}$ – запаздывающий (опережающий) поляризационный оператор экситонов. Вычислить $\Pi^R_{\mathbf{k},\omega}$ в общем виде не удается. Мы рассмотрим типичную для эксперимента ситуацию, когда $k \ll v_T$ и $\omega \ll v_T k$, где $v_T = \sqrt{2T/M}$ – тепловая скорость экситонов. Величина тока увлечения определяется через Im $\Pi^R_{\mathbf{k},\omega}$, которая в области $k \ll v_T$ и $\omega \ll v_T k$ имеет вид

Im
$$\Pi^{R}_{\mathbf{k},\omega} = \pi \omega \sum_{\mathbf{p}} \frac{\partial f_{\mathbf{p}}}{\partial E_{\mathbf{p}}} \delta(\omega - \mathbf{pk}/M).$$
 (13)

При этом $\operatorname{Re} \Pi^R_{\mathbf{k},\omega}$ в области $\omega \ll v_T k$ может быть заменена своим статическим значением $\operatorname{Re} \Pi^R_{\mathbf{k},\omega=0}$.

Письма в ЖЭТФ том 101 вып. 3-4 2015

Выражение (13) показывает, что ток увлечения определяется экситонами, проекция импульса которых на направление распространения ПАВ удовлетворяет условию $\mathbf{pn_k}/M = \omega/k$, т.е. движущимися в фазе с волной ($\mathbf{n_k}$ – единичный вектор в направлении \mathbf{k}).

С учетом неравенств $k \ll v_T$ и $\omega \ll v_T k$ получаем [8]

$$\Pi^R_{\mathbf{k},\omega} = -\frac{M}{2\pi} \left(e^{2\pi N_0/MT} - 1 \right) + i \frac{M}{2\pi} \frac{\omega}{v_T k} F(T), \quad (14)$$

где $F(T)=\int_0^\infty \frac{dx}{\sqrt{x}}\frac{\partial f}{\partial x}<0$
и $f(x)=[\exp(x-\mu/T)--1]^{-1}.$ Для тока увлечения имеем

$$\mathbf{j} = \frac{-|U_{\mathbf{k},\omega}|^2 F(T)}{\left[1 + \frac{2d}{a_{\rm B}} \left(e^{2\pi N_0/MT} - 1\right)\right]^2} \frac{M}{\pi} \frac{\omega \mathbf{k}}{v_T k^3}, \qquad (15)$$

где $a_{\rm B}$ – боровский радиус экситона. Таким образом, ток направлен по направлению волнового вектора акустической волны. Наличие взаимодействия экситонов друг с другом приводит к экспоненциальному уменьшению величины тока вследствие экранировки [11, 12]. Подставляя в (15) $k = \omega/c_t \xi$ и учитывая, что $|U_{{\bf k},\omega}|^2 \sim \omega I_0$, находим, что ток увлечения экситонов при высоких температурах $j \sim I_0$ и не зависит от частоты.

3. Низкие температуры, $T \ll T_c$. Рассмотрим ток акустического увлечения экситонов в присутствии бозе-конденсата. Хорошо известно, что элементарными возбуждениями бозе-конденсированных систем являются квазичастицы Боголюбова. Явный вид закона дисперсии боголюбовских возбуждений зависит от модели, используемой для описания взаимодействующей экситонной системы. В случае малой экситонной плотности, $N_0 a_{\rm B}^2 \ll 1$, адекватной теоретической моделью является модель слабонеидеального бозе-газа. В рамках этой модели закон дисперсии элементарных возбуждений имеет вид ε_k = $\sqrt{rac{k^2}{2M}\left(rac{k^2}{2M}+2g_0n_c
ight)},$ где n_c – плотность экситонов в конденсате. В длинноволновом пределе, $\frac{k^2}{2M} \ll$ $2g_0n_c$, элементарные возбуждения представляют собой звуковые кванты, $\varepsilon_k \approx sk$, скорость которых определяется выражением $s = \sqrt{g_0 n_c/M}$. В бозеконденсированной фазе большинство экситонов находится в конденсате. Однако вследствие (слабого) взаимодействия, а также конечной температуры существуют и надконденсатные экситоны с ненулевым импульсом. Под действием внешней звуковой волны увлекаться должны все частицы. Таким образом, мы имеем три вклада в ток. Будем рассматривать квантовый предел, $T \ll sk$. В этом режиме термически

Письма в ЖЭТФ том 101 вып. 3-4 2015

возбужденные экситоны (точнее, элементарные боголюбовские возбуждения) не играют особой роли: их функция распределения экспоненциально мала. Следовательно, формально теория может строиться при T = 0. Подчеркнем все же, что равенство нулю температуры не следует рассматривать буквально: полученные результаты применимы в области температур $0 < T \ll sk$. Вследствие слабости взаимодействия между экситонами плотность надконденсатных частиц мала по сравнению с n_c . В этом случае можно пренебречь взаимодействием надконденсатных частиц друг с другом и их влиянием на конденсатные частицы (обратным влиянием конденсатных частиц на надконденсатные пренебрегать нельзя).

Волновая функция системы представима в виде $\Psi(x) = \varphi(x) + \psi(x)$, где $\varphi(x) = \langle \Psi(x) \rangle$ – волновая функция конденсата, а $\psi(x)$ – надконденсатная часть. Введенные функции удовлетворяют следующим соотношениям: $\langle \psi(x) \rangle = \langle \varphi(x)\psi(x) \rangle = 0$. Функция $\varphi(x)$ находится как решение уравнения Гросса– Питаевского:

$$\left[i\partial_t - \frac{\mathbf{p}^2}{2M} + \mu - U(x) - g|\varphi(x)|^2\right]\varphi(x) = 0, \quad (16)$$

а функции Грина надконденсатных частиц, $G = -i\langle\psi\psi^{\dagger}\rangle$, $F = -i\langle\psi\psi\rangle$, – из матричного уравнения

$$\begin{pmatrix} i\partial_t - H(x) & -g\varphi^2(x) \\ -g\varphi^{*2}(x) & -i\partial_t - H(x) \end{pmatrix} \hat{G} = \hat{1}, \quad (17)$$
$$H(x) = \frac{\mathbf{p}^2}{2M} - \mu + U(x) + 2g|\varphi(x)|^2.$$

В уравнении (17) учтено взаимодействие с конденсатом.

Ток увлечения конденсата. Вычислим ток акустического увлечения конденсатных частиц, определяемый усреднением по времени выражения

$$\mathbf{j}_{c} = \frac{i}{2M} \left(\varphi \nabla \varphi^{*} - \varphi^{*} \nabla \varphi \right), \qquad (18)$$

где конденсатная функция должна быть найдена из уравнения Гросса–Питаевского до второго порядка по внешнему возмущению U(x) включительно:

$$\varphi(x) = \sqrt{n_c} + \delta \varphi^{(1)}(x) + \delta \varphi^{(2)}(x) + \dots$$
(19)

Если ограничиться лишь вкладом в ток порядка $U^2(x)$, то, очевидно, после усреднения по времени слагаемое $\delta \varphi^{(2)}(x)$ будет давать нулевой вклад. Таким образом, ток конденсата определяется величиной отклика первого порядка $\delta \varphi^{(1)}(x)$. Линеаризуя уравнение (16), получаем

$$\delta\varphi^{(1)}(x) = \sqrt{n_c} S_{\mathbf{k},\omega} U_{\mathbf{k},\omega} e^{i\mathbf{k}\mathbf{r}-i\omega t} + + \sqrt{n_c} S_{-\mathbf{k},-\omega} U_{\mathbf{k},\omega}^* e^{-i\mathbf{k}\mathbf{r}+i\omega t}, \qquad (20)$$
$$\delta\varphi^{(1)*}(x) = \sqrt{n_c} S_{\mathbf{k},\omega} U_{\mathbf{k},\omega}^* e^{-i\mathbf{k}\mathbf{r}+i\omega t} + + \sqrt{n_c} S_{-\mathbf{k},-\omega} U_{\mathbf{k},\omega} e^{i\mathbf{k}\mathbf{r}-i\omega t},$$

где функция отклика

$$S_{\mathbf{k},\omega} = \frac{\omega + k^2/2M}{\omega^2 - \varepsilon_k^2}.$$
 (21)

Подставляя (20) в (18) и усредняя по времени, получаем ток увлечения конденсата:

$$\mathbf{j}_c = \frac{2n_c |U_{\mathbf{k},\omega}|^2}{M^2} \frac{\omega k^2 \mathbf{k}}{(\omega^2 - \varepsilon_k^2)^2}.$$
(22)

Снова, как и выше, ток направлен по распространению акустической волны. Видно, что наличие взаимодействия приводит к резонансному характеру тока: при $k = \omega/c_t \xi$ знаменатель пропорционален $[1 - (s/c_t \xi)^2]^2$, а все выражение $j_c \sim \omega I_0$.

Ток увлечения надконденсатных частиц. Для нахождения тока увлечения надконденсатных частиц требуется найти поправку второго порядка как по внешнему полю U(x), так и по конденсатной функции $\varphi(x)$ к функции Грина надконденсатных частиц из уравнения (17). Используя разложения

$$\varphi^2 \approx n_c + 2\sqrt{n_c}\delta\varphi^{(1)} + [\delta\varphi^{(1)}]^2 + 2\sqrt{n_c}\delta\varphi^{(2)},$$
$$|\varphi(x)| \approx n_c + \delta n_c^{(1)} + \delta n_c^{(2)}, \qquad (23)$$

где $\delta n_c^{(1)} = \sqrt{n_c} [\delta \varphi^{(1)} + \delta \varphi^{*(1)}]$ и $\delta n_c^{(2)} = \sqrt{n_c} [\delta \varphi^{(2)} + \delta \varphi^{*(2)}] + |\delta \varphi^{(1)}|^2$, из (17) находим поправку второго порядка к матричной функции Грина надконденсатных частиц:

$$\hat{G}^{(2)} = \hat{G}_0 \hat{\Sigma}^{(1)} \hat{G}_0 \hat{\Sigma}^{(1)} \hat{G}_0 + \hat{G}_0 \hat{\Sigma}^{(2)} \hat{G}_0.$$
(24)

Несложный анализ, на котором мы не будем здесь останавливаться, показывает, что второе слагаемое в правой части не дает вклада в ток увлечения. Матрица $\hat{\Sigma}^{(1)}$ в первом слагаемом имеет следующую структуру:

$$\hat{\Sigma}^{(1)}(x) = \hat{\Sigma}^{(1)}_{\mathbf{k},\omega} e^{i\mathbf{k}\mathbf{r} - i\omega t} + \hat{\Sigma}^{(1)}_{-\mathbf{k},-\omega} e^{-i\mathbf{k}\mathbf{r} + i\omega t},$$

$$\hat{\Sigma}^{(1)}_{\mathbf{k},\omega} = U_{\mathbf{k},\omega} \begin{pmatrix} 1 + 2gn_c P_{\mathbf{k},\omega} & 2gn_c S_{\mathbf{k},\omega} \\ 2gn_c S_{-\mathbf{k},-\omega} & 1 + 2gn_c P_{\mathbf{k},\omega} \end{pmatrix}, \quad (25)$$

где $P_{\mathbf{k},\omega} = S_{\mathbf{k},\omega} + S_{-\mathbf{k},-\omega} = k^2/M(\omega^2 - \varepsilon_k^2)$, а для $\hat{\Sigma}^{(1)}_{-\mathbf{k},-\omega}$ делается замена $(\mathbf{k},\omega) \rightarrow (-\mathbf{k},-\omega), U_{\mathbf{k},\omega} \rightarrow U^*_{\mathbf{k},\omega}$. Невозмущенные функции Грина надконденсатных частиц в длинноволновом пределе $(\varepsilon_k = sk)$ имеют вид

$$\hat{G}_0 = \begin{pmatrix} G_0 & F_0 \\ F_0 & \tilde{G}_0 \end{pmatrix} = \frac{gn_c}{\omega^2 - \varepsilon_p^2 + i\delta} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}.$$
(26)

Усредненный по времени ток увлечения надконденсатных частиц определяется левым верхним элементом матричной функции Грина (24):

$$\mathbf{j} = \frac{i}{M} \sum_{\mathbf{p}} \mathbf{p} \left[\hat{G}_{\mathbf{p}}^{(2)}(-\mathbf{k},\omega) + \hat{G}_{\mathbf{p}}^{(2)}(-\mathbf{k},-\omega) \right]_{11}.$$
 (27)

Вычисляя произведения матриц в (24), получаем

$$\mathbf{j}_{n} = 4|U_{\mathbf{k},\omega}|^{2}(1+gn_{c}P_{\mathbf{k},\omega})[i\mathbf{C}(\mathbf{k},\omega)+i\mathbf{C}(-\mathbf{k},-\omega)],$$
$$\mathbf{C}(\pm\mathbf{k},\pm\omega) =$$
$$= \int \frac{d\Omega}{2\pi} \int \frac{d\mathbf{p}}{(2\pi)^{2}} \frac{\mathbf{p}}{M} G_{0}^{2}(\mathbf{p},\Omega) G_{0}(\mathbf{p}\pm\mathbf{k},\Omega\pm\omega). \quad (28)$$

Вычисление $\mathbf{C}(\mathbf{k},\omega)$ удобнее производить в мацубаровском представлении. Для начала, как и выше, используя соотношение $\frac{\mathbf{p}}{M}G_0^2(\mathbf{p}) = \frac{1}{2Ms^2}\nabla_{\mathbf{p}}G_0(\mathbf{p})$ (подчеркнем, что это равенство справедливо только для линейного закона дисперсии, $\varepsilon_{\mathbf{p}} = sp$), проинтегрируем по частям:

$$\mathbf{C}(\pm \mathbf{k}, \pm i\omega_n) = \frac{\pm \nabla_{\mathbf{k}}}{4Ms^2} \times \left[-2T \sum_{\omega_m} \int \frac{d\mathbf{p}}{(2\pi)^2} G_0(\mathbf{p}, \omega_m) G_0(\mathbf{p} \pm \mathbf{k}, \omega_m \pm \omega_n) \right]. (29)$$

Здесь мы также перешли к представлению конечных температур. Величина, стоящая в квадратных скобках, представляет собой поляризационный оператор надконденсатных частиц $P_{\mathbf{k},i\omega_n}^n$, явный вид которого при конечных температурах приведен в нашей работе [13]. При низких температурах ($sk \gg T$), положив функции распределения элементарных термических возбуждений равными нулю, имеем

$$P_{\mathbf{k},i\omega_{n}}^{n} = -\frac{(gn_{c})^{2}}{2(2\pi)^{2}} \int \frac{d\mathbf{p}}{\varepsilon_{\mathbf{p}+\mathbf{k}}\varepsilon_{\mathbf{p}}} \times \left[\frac{1}{i\omega_{n}+\varepsilon_{\mathbf{p}+\mathbf{k}}+\varepsilon_{\mathbf{p}}} - \frac{1}{i\omega_{n}-\varepsilon_{\mathbf{p}+\mathbf{k}}-\varepsilon_{\mathbf{p}}}\right]. \quad (30)$$

Учитывая четность этого выражения по ${\bf k}$ и выполняя, как и выше, аналитическое продолжение на область действительных частот, для тока увлечения надконденсатных частиц получаем

$$\mathbf{j}_{n} = \frac{|U_{\mathbf{k},\omega}|^{2}(1+gn_{c}P_{\mathbf{k},\omega})}{Ms^{2}}i\nabla_{\mathbf{k}}\left(P_{\mathbf{k},\omega+i\delta}^{n}-P_{\mathbf{k},\omega-i\delta}^{n}\right).$$
(31)

Вычисляя мнимую часть $P^n_{\mathbf{k},\omega+i\delta}$ и подставляя ее в (31), находим ток увлечения в виде

Письма в ЖЭТФ том 101 вып. 3-4 2015

$$\mathbf{j}_{n} = |U_{\mathbf{k},\omega}|^{2} (1 + gn_{c}P_{\mathbf{k},\omega}) \frac{Ms^{2}}{2} \frac{\mathbf{k}\theta[\omega - sk]}{\sqrt{(\omega^{2} - s^{2}k^{2})^{3}}}.$$
 (32)

Множитель в круглых скобках описывает связь надконденсатных и конденсатных частиц и, как и выше, отражает резонансный характер:

$$1 + gn_c P_{\mathbf{k},\omega} = \frac{\omega^2}{\omega^2 - s^2 k^2}.$$
(33)

Кроме того, при $k = \omega/c_t \xi$ имеем $\theta[\omega - sk] = \theta[c_t \xi - s]$, что указывает на пороговый характер зависимости тока увлечения надконденсатных частиц от плотности экситонов в конденсате вследствие соотношения $Ms^2 = gn_c$. В смысле же частотной зависимости выражение для тока увлечения имеет вид $j_n \sim I_0/\omega$.

В заключение сделаем следующее замечание. Резонансные знаменатели в формулах (22), (32) и (33) обращают эти выражения в бесконечность при $s \rightarrow \rightarrow c_t \xi = \omega/k$. Это является следствием пренебрежения затуханием элементарных возбуждений. Таким образом, резонансные знаменатели имеют смысл лишь в области $|\omega^2 - s^2 k^2| \ge \tau^{-1}$. Более строгое рассмотрение требует учета рассеяния экситонов на примесях. Данный вопрос будет рассмотрен отдельно.

Мы благодарим Э.Г. Батыева и М.В. Энтина за полезные обсуждения. Работа поддержана грантом РФФИ #14-02-00135 и программами РАН.

- A. Violante, K. Cohen, S. Lazic, R. Hey, R. Rapaport, and P. V. Santos, New J. Phys. 16, 033035 (2014).
- S. Lazic, A. Violante, K. Cohen, R. Hey, R. Rapaport, and P. V. Santos, Phys. Rev. B 89, 085313 (2014).
- E. A. Cerda-Mendez, D. N. Krizhanovskii, M. Wouters, R. Bradley, K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S. Skolnick, Phys. Rev. Lett. 105, 116402 (2010).
- T. Byrnes, N.Y. Kim, and Y. Yamamoto, Nat. Phys. 10, 803 (2014).
- A. A. High, J. R. Leonard, A. T. Hammack, M. M. Fogler, L. V. Butov, A. V. Kavokin, K. L. Campman, and A. C. Gossard, Nature 483, 584 (2012).
- L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard, and D. S. Chemla, Nature 417, 47 (2002).
- А. В. Горбунов, В. Б. Тимофеев, Письма в ЖЭТФ 96, 145 (2012).
- В. М. Ковалев, А. В. Чаплик, Письма в ЖЭТФ 96, 865 (2012).
- Э. Г. Батыев, В. М. Ковалев, А. В. Чаплик, Письма в ЖЭТФ 99, 623 (2014).
- Л. Д. Ландау, Е. М. Лифшиц, Курс теоретической физики. Т. 7. Теория упругости, Наука, М. (1965).
- В. М. Ковалев, А. В. Чаплик, Письма в ЖЭТФ 92, 208 (2010).
- 12. A. L. Ivanov, Europhys. Lett. 59, 586 (2002).
- 13. V. M. Kovalev and A. V. Chaplik, arXiv:1310.8394.