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Properties of electrons scattered by a strong plane electromagnetic

wave with a linear polarization: semiclassical treatment
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The problem of scattering of ultrarelativistic electrons by a strong plane electromagnetic wave of a low

(optical) frequency and linear polarization is solved in the semiclassical approximation, when the electron wave

packet size is much smaller than the wavelength of electromagnetic wave. The exit momenta of ultrarelativistic

electrons scattered are found using the exact solutions to the equations of motion with radiation reaction in-

cluded (the Landau–Lifshitz equation). It is found that the momentum components of electrons traversed the

electromagnetic wave depend weakly on the initial values of momenta. These electrons are mostly scattered

at small angles to the propagation direction of the electromagnetic wave. The maximum Lorentz factor of

electrons crossed the electromagnetic wave is proportional to the work done by the electromagnetic field and

is independent of the initial momentum. The momentum component parallel to the electric field vector of the

electromagnetic wave is determined solely by the laser beam diameter measured in the units of the classical

electron radius. As for the reflected electrons, they for the most part lose the energy, but remain relativistic.

A reflection law that relates the incident and reflection angles and is independent of any parameters is found.
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Introduction. The scattering of electrons by the

electromagnetic wave is a textbook subject both at clas-

sical and quantum level. Even in the regime of strong

strengths, the transition amplitude in a one-vertex ap-

proximation is well-known and calculated using the ex-

act solutions to the Dirac equation (see, e.g., [1]). How-

ever, for the laser radiation with large intensity (it

should be of the order of I & 1024 W/cm2 for the op-

tical laser), the process of radiation of soft photons be-

comes relevant and even dominates at certain circum-

stances. Hence, an infinite number of diagrams have to

be summed in order to describe correctly the properties

of the scattered electrons and photons in this regime.

Furthermore, at such intensities, the scattering ampli-

tudes depend nonlinearly on the field strength of the

electromagnetic wave [2] and so the results strongly de-

pend on the shape of the laser beam. The lasers with

such intensities will become accessible in the nearest

future [3, 4], but a thorough theory of interaction of

strong electromagnetic waves with a matter is far from

being complete. We report on new (to our knowledge)

startling features of the unpolarized electrons scattered

by a laser beam with linear polarization. These proper-

ties, in particular, allow one to manipulate the charac-
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teristics of electron bunches, in addition to the standard

means (see, e.g., [5]).

The issue of direct summing an infinite number of

diagrams with soft photons and dressed electron prop-

agators is a formidable task. Therefore, we shall study

this problem in the semiclassical approximation neglect-

ing the radiation of hard photons with the energies

comparable to the electron energy, the vacuum polar-

ization effects, and the electron-positron pairs produc-

tion processes. This is a reasonable approximation for

the electromagnetic field strengths less than the critical

(Schwinger) field (the intensity I ≈ 1030 W/cm2). For

example, in [6], 5 · 109 electrons with the Lorentz fac-

tor γ ≈ 105 produce only 106 electron-positron pairs for

22000 laser pulses with the intensity I ≈ 1018 W/cm2.

Besides, we completely neglect the interaction of elec-

trons in the bunch and suppose that the size of elec-

tron’s wave packet in the momentary comoving frame

is of the order of several dozens of the Compton wave-

lengths. This does not mean that the electron bunch

must be of that size, but the one-particle electron wave

functions describing its state should be localized to this

scale. Then it can be shown (see, e.g., [7] and also [8])

that the electron wave packet center moves along a tra-

jectory obeying the classical equations of motion (the

Lorentz equation) with the electromagnetic field repre-

senting a superposition of the external field and the field
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created by an electron wave packet. If the wave packet is

localized enough, the standard arguments used in deriv-

ing the Lorentz–Dirac (LD) equation (see, e.g., [9–16])

transform this Lorentz equation into the LD equation

in the leading nontrivial order in the size of the wave

packet. So, in fact, we have to investigate the solutions

to the LD equation. This equation is the leading order

approximation to the evolutionary equation for the av-

erage electron coordinate in the in-in formalism (see,

e.g., [8]). In the standard S matrix approach, we need

to sum an infinite number of diagrams with soft photons

in order to describe such dynamics of the electron wave

packet.

The quantum corrections due to radiation of hard

photons can be approximately taken into account intro-

ducing an additional stochastic force to the equations

of motion of the wave packet center [17]. This results

in a broadening of the wave packet, but the dynamics

of its center are still described by the classical equa-

tions of motion under the assumptions made. Usually,

the relevance of quantum effects is characterized by the

parameter χ of [2]: if χ ≥ 1, the quantum effects are rele-

vant. This estimation is based on a one-vertex amplitude

with the initial Volkov state for the electron. The Volkov

states are not localized in space. So these estimations are

not immediately applicable to the case when the elec-

trons are described by localized wave-packets and/or the

radiation process becomes essentially non-perturbative.

Nevertheless, on dimensional grounds, one may expect

that for χ ≫ 1 the quantum corrections become rele-

vant. However, as discussed thoroughly in [18], the elec-

trons in a strong electromagnetic wave are rapidly de-

excited to the state with a minimum radiation (the late

time asymptotics), i.e., χ becomes small since the elec-

trons will move along the electromagnetic wave with the

velocity close to the speed of light. The late time asymp-

totics, we shall use in analyzing the properties of the

scattered electrons, are attractors for the set of physical

solutions to the LD equation [19, 18]. Having emitted

a hard photon and suffered a recoil, the electron tends

to return to the initial trajectory. The correction to the

LD equation due to spin can be also neglected for the

unpolarized wave packets of electrons with a vanishing

average spin. The effect of radiative polarization is neg-

ligibly small in the ultrarelativistic case we consider (see

[20] and for a recent discussion, e.g., [21]).

So, if we apply the LD equation to describe the

electron dynamics in the field of a plane linearly po-

larized electromagnetic wave with the intensity I &

1024 W/cm2 and the energy of photons Ω ≈ 1 eV, we

shall see that, in the ultrarelativistic limit γ & 102,

the electrons scattered by this wave can cross the laser

beam or be reflected from it. We consider a planar prob-

lem when the electron bunch moves in the polarization

plane of the electromagnetic wave. A general problem

can be reduced to this one by an appropriate Lorentz

transform [18]. In the initial frame, the problem is es-

sentially planar so long as the momentum component

normal to the polarization plane is much lesser than the

component lying in it. In the case of a planar motion,

the momentum of an electron passed the electromag-

netic wave depends weakly on the initial momentum

and is determined by the laser beam parameters and

the phase of electromagnetic wave at the electron en-

trance point. In particular, such electrons possess the

identical momentum projections to the axis normal to

the laser beam. This projection is specified solely by the

laser beam diameter measured in the classical electron

radii. As for the reflected electrons, there is a reflec-

tion law that relates the reflection and incidence angles.

This law is independent of any parameters. The pene-

tration depth of the reflected electrons to the laser beam

is much smaller than the wavelength of the electromag-

netic wave. Of course, these results are valid in a certain

approximation that will be described in detail.

Practically speaking, we study the properties of the

exact solutions of the so-called Landau–Lifshitz (LL)

equation [22] since the exact physical solutions of the

LD equation cannot be found for the field configurations

we discuss. It was shown in [18] that, for such field con-

figurations, the solutions of the LL equation provide a

good approximation to the physical solutions of the LD

equation even for the strong field strengths. Moreover,

the solutions of the LL and LD equations tend asymp-

totically to each other at large times. The LL equation

now becomes a standard tool in describing the evolution

of electrons in a laser field with radiation reaction taken

into account (see, e.g., [23–29]). The results of these pa-

pers also demonstrate that the behavior of electron’s dy-

namics changes qualitatively for large field strengths of

the laser wave. However, these investigations are mostly

numerical and cannot give a clear insight what happens

in this radiation dominated regime. In many of these pa-

pers, to simplify the numerical simulations, some terms

of the LL equation are thrown away (see, e.g., [30, 31])

without a rigorous justification, or even one dimensional

simulations are only given (see, e.g., [32, 33]). There-

fore, it is of importance to analyze the exact solutions

in the case when they can be found. Note that the ex-

act solutions we shall study do not display the radia-

tion reaction trapping effect [30, 31]. Though there is a

considerable part of the electrons that escape the laser

beam and move at small angles (less than 2◦ for the

intensities I & 1025 W/cm2) to the laser beam propaga-
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tion direction. Another point is that certain regions (we

shall accurately describe them) of the strong laser beam

do become opaque for the ultrarelativistic electrons, as

reported in [31, 34], however other regions of the beam

transmit the electrons.

We use the same notation as in [22]. Besides, we put

the speed of light c = 1 and measure all the lengths

in the Compton wavelengths lC = ~/mc. Then the LL

equation becomes

υ̇µ = fµνυ
ν+λ(ḟµνυ

ν+fµνf
νρυρ−υ

λfλνf
νρυρυµ), (1)

where λ = 2e2/(3~) and υµ = ẋµ is the 4-

velocity. The dimensionless electromagnetic fields

fµν = sgn(e)Fµν/E0 have been introduced, where

E0 =
m2

|e|~
≈ 4.41 · 1013 G = 1.32 · 1016 V/cm. (2)

The energies are measured in the electron rest energies

m ≈ 0.511 MeV and so the 4-velocity coincides with the

4-momentum. The modern accelerator facilities are able

to accelerate electrons up to 50GeV. The intensities of

the laser fields accessible at the present moment [35, 27]

are of the order 1022 W/cm2 with the photon energies

about 1 eV. Thus

γ ≈ 105, ω0 ≈ 1.47 · 10−4, Ω ≈ 1.96 · 10−6, (3)

where γ is the Lorentz factor, ω0 is the electromagnetic

field strength in a laser beam, and Ω is the photon en-

ergy. We suppose that Ω is given by (3) throughout this

paper.

Dynamics of electrons in a plane wave. Let us

consider a monochromatic linearly polarized laser beam

with the energy of photons Ω propagating along the y

axis. We can simulate such a laser beam by a plane elec-

tromagnetic wave

fµν = ω(x−)e
[µ
−
e
ν]
1 , f2

µν = ω2e−µ e
−

ν ,

ex = −ω, hz = ω,
(4)

where ω(x−) = ωm cosψ, ψ = Ωx− + ψ0, x− =

= x0 − y, and ψ0 is a constant phase. The 4-vectors

eµ
−
= (1, 0, 1, 0) and eµ1 = (0, 1, 0, 0) are also introduced.

Suppose that this electromagnetic field vanishes outside

the strip x ∈ [0, d], where d is the laser beam diam-

eter. This is a certain approximation, of course, to a

real situation (for the description of real laser beams

see, e.g., [5]). The photons in the wave packet of the

width d must possess the transverse momentum of the

order of 2π/d. If d & 5λγ , where λγ = 2π/Ω is the

photon wavelength, then the relative correction to the

photon energy coming from the transverse momentum

amounts only k2
⊥
/(2Ω2) . 1/50, and so the expression

(4) is a good approximation to the real wave packet of

the width d. We shall assume that d is of the order of

5λγ . However, as will be shown, all the results we obtain

depend weakly on the beam diameter (as d1/3).

As for the electrons, we suppose they move in the

plane z = 0 in the x axis direction and strike the laser

beam at the angle ϕ counted from the y axis. The exact

solutions to the LD equation cannot be found in this

case, but the LL equation is integrable. The solution to

the LL equation has the form (see [36] and references

there, and also [37, 38, 25, 18])

υ− =
[

υ−1
− (0) +

λω2
m

4Ω
(2Ωx− + sin 2ψ − sin 2ψ0)

]−1

,

x−

[

υ−1
−

(0)−
λω2

m

4Ω
sin 2ψ0

]

+

+
λω2

m

4Ω2
(Ω2x2

−
+ sin2 ψ − sin2 ψ0) = τ,

r = r(0)− λωm

(

1 +
ω2
m

2Ω2

)

(cosψ − cosψ0)−

−
[ ωm

Ωυ−(0)
−
λω3

m

4Ω2
sin 2ψ0

]

(sinψ − sinψ0)−

−
λω3

m

2Ω
x− sinψ +

λω3
m

6Ω2
(cos3 ψ − cos3 ψ0), (5)

where r = υx/υ− = dx/dx−, υ− = υ0− υy, υ
0 = γ, and

we have set x−(0) = 0. Notice that the misprint was

made in Eq. (55) of [18]: the last term in the expression

for r was missed. For λ = 0 the solution (5) transforms

into the well-known solution to the Lorentz equation in

the plane electromagnetic wave with a linear polariza-

tion (see, e.g., [22]). If Ωx− is small, the solution (5)

becomes

υ− =
[

υ−1
− (0) + λω̄2x−(1− Ωx− tanψ0)

]−1

,

x−υ
−1
− (0) +

λω̄2

2
x2−

(

1−
2Ωx−
3

tanψ0

)

= τ, (6)

r = r(0)−
ω̄x−
υ−(0)

(

1−
Ωx−
2

tanψ0

)

−

−
λω̄3

2
x2−

(

1−
4Ωx−
3

tanψ0

)

+ λω̄Ωx− tanψ0,

where ω̄ = ωm cosψ0 and only the leading correction in

Ωx− is retained. Integrating (6), we have

x = r(0)x− − ω̄x2−(1 − Ωx− tanψ0/3)υ
−1
−

(0)/2−

− λω̄3x3
−
(1− Ωx− tanψ0)/6 + λω̄Ωx2

−
tanψ0/2, (7)

where x(0) = 0. As for r(x−) in (5), the integration over

x− is readily performed, but the resulting expression
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Fig. 1. (Color online) Dynamics of electrons scattering by a strong electromagnetic plane wave. The sine curve shows the

electric vector in the wave. The trajectory of the electron crossed the laser beam (the dashed curve) is well described by (7)

without the terms depending on the initial momenta. As for the reflected electrons (the solid curve), the module of the exit

angle tangent is twice the incidence angle tangent (19). The penetration depth is depicted schematically. The left inset: the

penetration depth in the laser beam diameters. The asymptotics at large γ is in agreement with (18). The right inset: the

value of the electromagnetic wave phase that the electron spends in it versus the initial phase characterizing the electron

entrance point. The rough estimate is given by (11), while the fine estimate is obtained using the approximate expression for

x(x−), where the terms depending on the initial momenta are thrown away (the case (ii) in (10))

is rather huge and we do not write it here. The mass-

shell condition, υ2 = 1, implies that all the 4-momentum

components are expressed in terms of υ− and r:

υ0 =
υ−
2
(υ−2

−
+ r2 + 1),

υy =
υ−
2
(υ−2

−
+ r2 − 1), υx = υ−r.

(8)

It is convenient to express the initial momentum though

the γ factor and the entrance angle ϕ of the electron to

the laser beam

υ− ≈ 2γ sin2(ϕ/2), r ≈ cot(ϕ/2), ϕ ∈ [0, π], (9)

where γ ≫ 1 and ϕ ≫ γ−1. The solutions (5) or (6)

do not display the radiation reaction trapping effect

[30, 31]. A secular term (the penultimate term in the ex-

pression for r) [36, 37] dominates at x− large and drives

the electron out of the laser beam. A similar term enters

the solution for a circularly polarized electromagnetic

wave (see, e.g., Eq. (52) of [18]).

Properties of the scattered electrons. It is clear

that two cases are possible: a) the electron passes the

laser beam and escapes from its opposite side, or b) the

electron is reflected by the electromagnetic wave. Con-

sider, at first, the case (a).

In order to determine the momentum of the electron

escaped, it is necessary to find the minimal positive root

xf
−

of the equation x(x−) = d, to substitute it to the

expressions (5) or (6), and then to employ formulas (8).

Generally, this momentum depend on the initial data

γ and ϕ. However, as seen from (5), (6), if the field

strength of the electromagnetic wave is large enough,

γ ≫ 1, and ϕ ≫ γ−1, the dependence on the initial

data γ and ϕ becomes negligibly small. The main con-

tribution to the final momentum comes from the terms

that are proportional to λ, i.e., from the terms that arise

due to radiation reaction. The dependence on υ−(0) and

r(0) is negligible provided that

i) λω̄2x−υ−(0) ≫ 1, r(0) ≪ λω̄3x2− for Ωx− ≪ 1,

ii) λω2
mx−υ−(0) ≫ 1, Ωr(0) ≪ λω3

mx− for Ωx− & 1.
(10)

Simple analytical formulas for the momenta of escaping

electrons can be obtained in the case (i) only. It is this
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case that is realized for the strong fields and large γ,

since it takes a small part of the electromagnetic wave

period for a charged particle to traverse the laser beam

(see Fig. 1). This, in particular, implies that the assump-

tion of a laser wave monochromaticity is not relevant in

the case (i).

From (7) in the case (i), we have

xf− ≈ −ω̄−1
(6d

λ

)1/3

(1 + ε)−1/3, ε =
Ω

ω̄

(6d

λ

)1/3

tanψ0.

(11)

The approximate equality is justified in the case when

|ε| . 1 and λω̄/d≪ 1. The latter inequality is satisfied

for d & 5λγ and reasonable ωm’s. In general, the last

term in (6), (7) can be neglected in comparison with the

penultimate term in these expressions. Henceforward,

we omit these small terms. Formula (11) is valid only

for the initial phases cosψ0 < 0 such that the electron

hits the region of the electromagnetic wave where the

Ex is negative (before the redefinition (1)), i.e., the field

assists the electron to cross the laser beam, see Fig. 1.

Remark that |ε| . 1 for the strengths ωm ≥ 103/2ω0 at

d ∼ 5λγ . Besides, the value of ψ0 must be sufficiently

far from the points π/2 + πn, n ∈ Z.

Making use of (11) and (6), we arrive at the approx-

imate expressions

υfx ≈
1

2

(6d

λ

)1/3 1 + 4ε/3

(1 + ε)4/3
, υf− ≈ −

(λ/6d)1/3

λω̄(1 + ε)2/3
,

υf
−
υfx ≈ −

1 + 4ε/3

2λω̄(1 + ε)2
, υfy ≈ −

3ω̄d(1 + 4ε/3)2

4(1 + ε)2
,

υf0 ≈ υfy , tanα ≈ −
2(6d/λ)1/3

3ω̄d

(1 + ε)2/3

1 + 4ε/3
,

(12)

where α is the electron exit angle counted from the y

axis. The relations (12) are valid so long as the condi-

tions (10) for the case (i) are fulfilled. These conditions

are written as

λω̄γ sin2
ϕ

2

(6d

λ

)1/3

≫ 1, cot
ϕ

2
≪

λω̄

4

(6d

λ

)2/3

,

(6d/λ)1/3 ≪ −ω̄/Ω,
(13)

respectively. Numerical simulations show that the re-

strictions above can be weaken to a large extent, and

formulas (12) still hold with a high accuracy (see Fig. 2).

As follows from the general solution (see Eq. (55) of [18])

in the non-planar case, when υz 6= 0, the first three for-

mulas in (12) do not change. The other expressions in

(12) remain valid so long as

υ2z(0)

υ2
−
(0)

≪ r2f ≈
λ2ω̄2

4

(6d

λ

)4/3

. (14)

As mentioned in the Introduction, the electrons are

rapidly de-excited in the electromagnetic wave, and the

parameter χ := |ω̄|υ− characterizing a relevance of

quantum corrections becomes small. Indeed, from (12)

we have

χ ≈
(λ/6d)1/3

λ(1 + ε)2/3
≈ 0.076, (15)

where we have put ε = 0 and taken d = 5λγ in the last

approximate equality. In the leading order in ε, the fi-

nal value of χ is independent of the initial Lorentz factor

and the field strength of the electromagnetic wave.

Notice also that the mistake was made in formula

(121) of [18] and in the estimations following from it

since this formula does not take into account the essen-

tially nonlinear dynamics of the electron in the asymp-

totic regime. In particular, the proper-time of the elec-

tron, when it escapes from the laser beam, is equal to

τesc ≈
λ

2

(6d

λ

)2/3 1 + 2ε/3

(1 + ε)2/3
. (16)

The initial data are assumed to satisfy the conditions

(13). The restriction on the angles (126) of [18], where

the radiation formed on the asymptotics can be ob-

served, becomes

|ζ| =
(k21 + k23

k2
−

)1/2

= cot
δ

2
≪

λ|ω̄|

2

(6d

λ

)2/3 1 + 2ε/3

(1 + ε)2/3
.

(17)

Here δ is the exit angle of a photon counted from the y

axis. For ε = 0, d = 5λγ , and ω̄ = 103/2ω0, the quantity

standing on the right-hand side of the inequality is ap-

proximately 82.7. In the leading order in ε, the spectral

density of radiation in the case we consider is described

by the formulas presented in section 5.1 of [18].

Up to the terms of the order of ε2, the momentum

component υfx of the electrons crossed the laser beam

is determined solely by the laser beam diameter d mea-

sured in the classical electron radii. A numerical analysis

reveals that the rough estimate (ε = 0) for υfx is satisfied

with the accuracy of 1.4 percents for almost all the ultra-

relativistic electrons crossed the laser beam (see Fig. 2).

This relation holds far beyond the validity bounds (13)

of the approximations made in deriving (12). In contrast

to υfx , the product υf
−
υfx is independent of the beam di-

ameter d in the leading order in ε and determined by

the field strength at the entrance point of the electron

to the wave [19].

In the case (ii) of (10), the momenta of the scattered

electrons are independent of the initial values γ and ϕ

and specified by formulas (5), where the terms propor-

tional to r(0) or υ−1
−

(0) are to be omitted. The major

obstacle for the analytical study in this case is the im-

possibility to solve the equation x(x−) = d in an explicit
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Fig. 2. (Color online) The dependence of υf
x on the initial phase ψ0. The straight line on the top is the rough estimate (12)

at ε = 0. The estimations (24), (25) for zeros of υf
x are ψr

0 ≈ 1.11π, ψl
0 ≈ 0.30π, respectively. The bottom inset: the exit

angle versus the initial phase. Transmitted electrons escape a laser beam mostly at small nearly equal angles α. The rough

estimate for this angle is given by (12) at ψ0 = π. Reflected electrons also mostly exit at a given angle determined by the

reflection law (19). The estimate following from this law is depicted as a straight line. The top inset: a comparison with the

estimates (the green lines) obtained from (5) by discarding the terms depending on the initial momenta and taking xf
−

from

(11)

form, although it can be simply solved numerically. If

Ωxf− ≈ 1, formula (11) can be used to estimate the value

of xf
−

. The results of numerical simulations (Fig. 1) show

that the latter approximation is good enough for the

field strengths ωm ≥ 103/2ω0 at d ∼ 5λγ .

Now we consider the case (b). In this case, the elec-

tron spends a short time in the laser beam. Hence, the

ratio rf depends on r(0), while the dependence of rf

and υf
−

on υ−(0) is negligibly small in the ultrarela-

tivistic limit. The quantity Ωxf− ≪ 1 for almost all the

reflected electrons, and so one can use (7) putting Ω = 0

and discarding the terms proportional to υ−1
− (0) there.

Then we obtain

xf− =
√

6r(0)/(λω̄3), xm =
√

8r3(0)/(9λω̄3), (18)

where xm is the penetration depth. Formula (18) takes

place at cosψ0 > 0 only. The penetration depth to the

laser beam does not depend on the energy of the ultra-

relativistic electron striking it, but is determined only

by the field strength at the electron entrance point and

by the incidence angle (see Fig. 1). Substituting xf
−

into

(6) and discarding the terms specified above, we come

to

rf = −2r(0), υf− = [6λω̄r(0)]−1/2,

υfx = −[2r(0)/(3λω̄)]1/2, υf
−
υfx = −(3λω̄)−1,

υfy ≈
4r2(0)− 1
√

24λω̄r(0)
, υf0 ≈

4r2(0) + 1
√

24λω̄r(0)
,

tanα =
4r(0)

1− 6λω̄r(0)− 4r2(0)
≈

4cot(ϕ/2)

1− 4cot2(ϕ/2)
,

(19)

where it is supposed that r(0) ≫ λω̄ and ϕ ≫ γ−1 in

the approximate equalities. The expressions (19) hold

when

Ω ≪
√

λω̄3 tan(ϕ/2)/6, 8 cot3(ϕ/2) < 9λω̄3d2,

[6λω̄ sin3(ϕ/2) cos(ϕ/2)]1/2 ≫ γ−1.
(20)

The first restriction is satisfied for cot(ϕ/2) . 1 and

ω̄ ≥ 103/2ω0. The second inequality guaranteeing that
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Fig. 3. (Color online) Left panel: the reflection law. Formula (19) provides a faithful estimate for the reflection angle when

the phase ψ0 lies near the plateau of the plot α(ψ0) given at Fig. 2. In that case, the relative error between the exit angle

deduced from the exact solution and formula (19) is less than 2 percents. The point ψ0 = π/4 is not on this plateau and

so a large deviation from formula (19) arises. Right panel: the escaping electron γ factor versus the exit angle. The cusps

on the curves at α < 0 correspond to the reflection angles prescribed by (19). The cusp at α = 0 is formed mainly by the

transmitted electrons with the γ factor approximated by (12) at ψ0 = π. For equiprobable initial phases, a high density of

blobs on a curve corresponds to a high probability to find electrons with such an exit angle and γ factor

the electron does not escape from the opposite side of

the laser beam follows from the first one at cot(ϕ/2) . 1

and d & λγ . The last inequality is fulfilled at γ & 103,

ω̄ = ω0, and sinϕ & 1/10. It is clear that the larger ω̄

and γ, the larger interval of the angles ϕ complies with

the restrictions (20). The parameter χ is also small. For

ω̄ = 103/2ω0 and cot(ϕ/2) ∼ 1, we have from (19)

χ ≈ {ω̄/(6λr(0)]}1/2 ≈ 0.40. (21)

The first four formulas in (19) are left unchanged for

a non-planar scattering. The other relations still hold

provided

υ2z(0)/υ
2
−(0) ≪ r2f ≈ 4r2(0). (22)

The relations (19) imply that the electron is reflected

from the laser beam at the angle which is determined,

with a high accuracy, only by the incidence angle and

not equal to it (see Fig. 3). The electromagnetic wave

transfers a momentum along the y axis to the electron,

and so the absolute value of the reflection angle is always

less than the incidence angle. Since

α′(ϕ) = −4(3 cosϕ+ 5)−1, (23)

the laser wave field reflecting electrons collimates the

electron bunch at the incidence angles ϕ ∈ [0, ϕ0],

ϕ0 = arccos(−1/3) ≈ 109.5◦, i.e., being reflected, the

electron bunch possesses a less dispersion of angles. For

ϕ > ϕ0, the angle dispersion in the reflected electron

bunch is bigger than in the initial bunch. Similarly to

the electrons crossed the laser beam, the product υf−υ
f
x

for the reflected electrons is independent of the initial

momentum, but equal to a different value than in (12).

It is clearly seen at Fig. 2 that the values of ψ0

separating the region of phases ψ0, where the elec-

trons pass through the laser beam, from the region of

phases, where the electrons are reflected, are not exactly

ψ0 = π/2 + πn, as one may expect from the approxi-

mate analytic formulas (11), (18). The value of the phase

ψ0, where, in increasing ψ0, the transmission region is

superseded by the reflection region, can be roughly esti-

mated using the expression (12) for υfx . This momentum

component vanishes at ε = −4/3. It approximately cor-

responds to

ψ0 ≈
3π

2
−

√

4Ω

3ωm

(6d

λ

)1/3

+ 2πn. (24)

A similar analysis for the value of the phase ψ0, where

the reflection is superseded by the transmission, leads

to
ψ0 ≈

π

2
−
[

11.8
Ω2r(0)

λω3
m

]1/5

+ 2πn. (25)

In order to obtain this formula, one needs to consider

the dynamics of reflected particles and find such a value

of the phase that υfx = 0.
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Conclusion. In sum, we obtained the relations (12),

(19) for the momenta of electrons scattered by a laser

beam that are quite unexpected or may be even coun-

terintuitive. For example, the electron cannot break

through some regions of the laser beam whatever high

the electron energy is. For a head-on collision this fact is

known for a long time (see, e.g., [37, 18] and for a non-

monochromatic wave [39]), but here we described ana-

lytically such a reflection for the electrons hitting the

electromagnetic wave at large angles. A simple reflec-

tion law was established. The electrons crossed the laser

beam are mostly scattered at small angles to its propa-

gation direction, the momentum component parallel to

the electric vector being determined by the laser beam

diameter only. The results of our semiclassical analysis

can be also used to provide a clear-cut distinction be-

tween the classical and quantum effects on the dynamics

of localized electron wave packets.
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