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We analyze the influence of a dissipative environment on geometric phases in a quantum system subject to

non-adiabatic evolution. We find dissipative contributions to the acquired phase and modification of dephas-

ing, considering the cases of weak short-correlated noise as well as of slow quasi-stationary noise. Motivated

by recent experiments, we find the leading non-adiabatic corrections to the results, known for the adiabatic

limit.
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The Berry phase [1] is a celebrated instance of geo-

metric phases in physics [2], which occurs during adia-

batic evolution of a quantum system. In the analysis of

generalizations of the Berry phase, Aharonov and Anan-

dan found a geometric phase even for non-adiabatic

evolutions [3]. When a quantum system is coupled to

an environment, phases, acquired by the system dur-

ing its evolution, are modified. In particular, it was

shown that in a quantum system subject simultaneously

to adiabatic variation of its parameters and to weak

short-correlated external noise, the phase acquires a ge-

ometric environment-induced contribution [4, 5]. Fur-

thermore, the environment-induced decoherence is mod-

ulated by the parameter variation, which results in a

geometric contribution to dephasing [4, 6]. Here we an-

alyze the dynamics of an open quantum system during

non-adiabatic evolution. In this case in a closed sys-

tem the total phase is a combination of the dynamical

phase and the geometric Aharonov–Anandan phase. We

find, how this phase is modified by the environment. In

particular, motivated by recent experiments with super-

conducting qubits, we study the adiabatic limit and find

the leading non-adiabatic corrections.

The Berry phase was measured directly, in the origi-

nal setting with cyclic variation of the magnetic field, in

NMR systems [7]. Some time ago the degree of control

over the quantum state and the coherence level allowed

for direct observation of the Berry phase in supercon-

ducting qubits [8]. In later experiments, the influence of

noise on the Berry phase in this system was studied and

the geometric dephasing was analyzed [9, 10].
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We first describe the coherent Aharonov–Anandan

phase and then consider the influence of dissipation. We

consider a quantum two-level system and use the spin-

1/2 language for its description. The Hamiltonian of a

two-state system can be presented as H = −B(t)σ/2,

where B can be referred to as the (pseudo)magnetic

field. For any variation of B(t) over a certain period,

0 < t < T , the unitary evolution operator has two eigen-

states, referred to as cyclic states as they return to their

initial values up to a phase, i.e., the two correspond-

ing opposite spin vectors return to their initial direc-

tions. The relative phase between these states acquired

over the time T defines the angle of rotation in spin

space over the cyclic direction. Aharonov and Anan-

dan [3] showed that it consists of two contributions de-

fined below, a dynamical and geometric phase. Indeed,

let S(t) be a cyclic state. Consider a spin frame with the

z′ axis along S(t). The magnetic field in this frame is

B
′ = B+ω, where ω is the angular velocity of the rotat-

ing frame relative to the lab frame. Since the equation of

motion in this frame reads Ṡ = S×B
′, and S is station-

ary, B′ has the same direction, B′ ‖ S. Thus the total

relative phase between S and −S, picked during the evo-

lution, is given by
∫

dtB′ =
∫

dtB‖ +
∫

dtω‖, where the

subindex ‖ indicates projection onto S. The first contri-

bution to this total phase, also given by
∫

dt 〈ψ|H |ψ〉,

the time integral of the average energy, is the dynamical

phase (here |ψ(t)〉 is the quantum state, corresponding

to S(t)). The rest,
∫

dtω‖, similar to the case of the adi-

abatic evolution, is given by the solid angle, subtended

by S(t). This geometric contribution is the Aharonov–

Anandan phase.
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When the system is subject to external noise (cou-

pled to an environment), its dynamics is modified. For a

static field B, dissipation induces relaxation and dephas-

ing, as well as a modification of the dynamical phase.

For weak short-correlated noise, it was shown [4] that

for an adiabatically slowly varying field, on top of that

dissipation modifies the geometric Berry phase and in-

troduces a geometric contribution to dephasing. Here we

extend this analysis to the case of non-adiabatic evo-

lution. We find the acquired phase and dephasing for

a system coupled to environment and subject to non-

adiabatic manipulations.

Consider a quantum system, a spin-1/2 in our case,

coupled to an environment:

H = −
1

2
Bσ −

1

2
Xσ +Henv, (1)

where X = Xn is an operator of the environment, which

represents noise experienced by the quantum system

(we assume 〈X〉 = 0); Henv governs the dynamics of

the modes of the environment. To be specific, we con-

sider unidirectional noise with n = ẑ. Such anisotropy

of the noise is relevant, e.g., for superconducting qubits,

where different (pseudo-)spin directions correspond to

different physical variables [11]. We comment on other

situations later.

In the rotating frame (RF), with the z′-axis chosen

along S and the y′-axis orthogonal to the original z-axis

(this choice ensures that the frame returns to its initial

state after a cycle), the Hamiltonian reads

Ĥ ′ = −
1

2
B′σz′ + Ĥint +Henv (2)

with the interaction term

Ĥint = −
1

2
X (cos θ′σz′ − sin θ′σx′) ,

where θ′ is the angle between the direction z of the fluc-

tuations and the z′-axis (see Fig. 1).

The phases can be read off from the off-diagonal ele-

ment of the density matrix in the RF, 〈σx′+iσy′〉 = ρ↑↓.

Using the real-time Keldysh technique [12, 11], we can

derive the kinetic equation for the density matrix. For

weak noise with a short correlation time τc ≪ T1, T2
(here T1, T2 are the longitudinal and transverse relax-

ation times) one can use the Bloch–Redfield and the

rotating-wave approximations to find a closed equation

for the off-diagonal entry ρ↑↓:

d

dt
ρ↑↓(t) = iB′ρ↑↓(t)− Γ2ρ↑↓(t) (3)

with the complex “dephasing rate” given by

Fig. 1. (Color online) The rotating spin reference frame

x
′
y
′
z
′, rotating with angular velocity ω relative to the sta-

tionary frame xyz

Γ2 =

t
∫

−∞

dt′S(t− t′)

{

cos θ′(t) cos θ′(t′) +

+
1

2
sin θ′(t) sin θ′(t′) exp

[

−i

∫ t

t′
B′(τ)dτ

]}

, (4)

via the noise correlator S(t − t′) = 1
2 〈X(t)X(t′) +

+X(t′)X(t)〉.

To the leading order in small ωτc and Ḃ′τc
2

Γ2 = −

∞
∫

0

dtS(t)[cos θ′(cos θ′ + sin θ′ωy′t) +

+
1

2
sin θ′(sin θ′ − cos θ′ωy′t) exp(−iB′t) +

+
i

2
sin2 θ′Ḃ′

t2

2
exp(−iB′t)].

In terms of the noise power spectrum, the Fourier trans-

form of S(τ), we obtain

Γ2 = −i

∫

dΩ

2π
S(Ω)

[

cos2 θ′

Ω+ i0
+

sin2 θ′

2(Ω−B′ + i0)

]

+

+ ωy′

∫

dΩ

2π
S(Ω)

[

sin θ′ cos θ′

(Ω + i0)2
−

sin θ′ cos θ′

2(Ω−B′ + i0)2

]

−

−
1

2
Ḃ′ sin2 θ′

∫

dΩ

2π
S(Ω)

1

(Ω−B′ + i0)3
. (5)

The imaginary part of Eq. (5) gives the acquired phase:

∆Φ =

∫

(B′ − ImΓ2)dt.

As one can see, the second and third terms in (5) vanish

after integration over a closed trajectory.
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In a recent experiment [10], the spin underwent uni-

form evolution around the z-axis (the magnetic field of

fixed magnitude varied circularly around the z-axis) in

a near-adiabatic limit. While the noise in Ref. [10] was

rather quasi-stationary, for comparison we expand our

result to the second order in ω:

∆Φ ≈ −Re

∫

dt

∫

dΩ

2π
S(Ω)F (ω, θ,Ω), (6)

where

F (ω, θ,Ω) ≈
sin2 θ

2(Ω−B + i0)
(1 + βω + γω2), (7)

β =
(3B − 2Ω) cos θ

B(Ω−B + i0)
, γ =

3 cos2 θ − sin2 θ

B2
+

+
cos2 θ

(Ω−B + i0)2
+

sin2 θ

2B(Ω−B + i0)
.

Eq. (7) includes the ω-independent dynamical part, the

geometric part ∝ ω [4], and the leading non-adiabatic

correction ∝ ω2, which is non-geometric.

The real part of Eq. (5) gives the dephasing rate.

Dropping the last two terms, which vanish after inte-

gration over a closed path (the dephasing, however, is

well-defined for an open path too, cf. Ref. [4]), we find

1

T2
=

1

2
S(0) cos2 θ′ +

1

4
S (B′) sin2 θ′. (8)

The dynamics of the level occupations, the diagonal en-

tries of the density matrix, is decoupled from the phase

and describes their relaxation. From the Bloch equations

in the rotating frame we find the relaxation rate

1

T1
=

sin2 θ′

2
S(B′) . (9)

In the adiabatic limit ω → 0 the relaxation and dephas-

ing rates (8), (9) contain the dynamical part (ω = 0),

the geometric part ∝ ω [4, 5], and further non-adiabatic

corrections.

We found environment-induced corrections to the

phase of a two-level system beyond the adiabatic ap-

proximation for unidirectional coupling to the environ-

ment. One can account for more general stationary noise

by adding contributions of independent noise modes.

Another case was considered in Ref. [10], where the

field B rotated uniformly around the z-axis with its

horizontal component fluctuating, i.e., B = B[cos θẑ +

+sin θ n(t)] and X = Xn(t) with n = x̂ cosωt+ ŷ sinωt.

In this case of “radial” noise n is stationary in the rotat-

ing frame, and the analysis can use the same methods

as above.

Apart from the short-correlated noise, one can also

consider “quasi-stationary” noise [10, 13, 4], with cor-

relation times longer than the time of each experimen-

tal run, τc ≫ T . In this case the noise X is station-

ary during each run, and decoherence arises after av-

eraging over many runs. While the resonant part of

the transverse component of X in the RF, if present,

may induce relaxation processes, to find the acquired

phase and dephasing we just average the exponential

exp(i
∫

|B′ +X|dt). We consider an example of uniform

variation of B = Bz ẑ+B⊥(x̂ cosωt+ŷ sinωt) (and hence

B
′ = B+ ωẑ) around ẑ with either the “vertical” noise

X ‖ z or “radial” noise [10] X = X(x̂ cosωt + ŷ sinωt).

In both cases X is stationary in the rotating frame.

To find the average, we first expand the imagi-

nary exponent i
∫

|B′ +X|dt to the second order in X:

|B′ + X| ≈ B′ + X‖ + (X2
⊥/2B

′). To the leading or-

der, the phase is obviously given by the average of the

second-order term, while the dephasing by the average

square of the first-order term. Thus we find for n = ẑ

the phase modification by the noise of

δΦ =
T

2B′
〈X2〉 sin2 θ′ (10)

and the coherence suppression factor

e−D with D =
1

2
T 2〈X2〉 cos2 θ′. (11)

For the radial noise we find the same expressions with

the sine and cosine interchanged.

From these expressions we can immediately find the

limiting behavior in the near-adiabatic limit, ω → 0, of

interest to Ref. [10], where this limit was studied. This

amounts to expansion of the rhs of Eqs. (10), (11) in ω.

In particular, for the radial noise [10] the suppression

factor is

D =
1

2
T 2〈X2〉 sin2 θ ×

×

[

1−
2ω

B
cos θ +

ω2

B2
(4 cos2 θ − 1)

]

. (12)

This reproduces the result of Ref. [10] except for the ω2-

term, where 4 cos2 θ − 1 replaces cos2 θ. This new term

may be relevant for the analysis of the differences be-

tween theory and the data in Ref. [10]. To understand

its origin, note that if one expands |B + X| in the ex-

ponent only to order ω, this gives ω0, ω, and ω2-terms

in the suppression factor [10], however, the ω2-term in

|B+X| also contributes.

In summary, we analyzed the influence of weak dis-

sipative environment on the Aharonov–Anandan non-

adiabatic geometric phase and dephasing. We found
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both the environment-induced phase modification and

dephasing for short-correlated noise and for quasi-

stationary noise.
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