Термодинамические свойства редкоземельных оксидов кобальта и твердых растворов La_{1-x}Gd_xCoO₃

Ю. С. Орлов^{+*1)}, В. А. Дудников⁺, М. В. Горев⁺, С. Н. Верещагин[×], Л. А. Соловьев[°], С. Г. Овчинников^{+°}

+Институт физики им. Киренского СО РАН, 660036 Красноярск, Россия

*Сибирский федеральный университет, 660041 Красноярск, Россия

 $^{\times}$ Институт хими
и и химической технологии CO PAH, 660036 Красноярск, Россия

^оНациональный исследовательский ядерный университет "МИФИ", 115409 Москва, Россия

Поступила в редакцию 22 марта 2016 г. После переработки 6 апреля 2016 г.

Приведены результаты порошкового рентген-дифракционного анализа кристаллической структуры, фазового состава и молярной теплоемкости кобальтитов $La_{1-x}Gd_xCoO_3$ в интервале температур от 300 до 1000 К. Исследовано поведение коэффициента объемного теплового расширения кобальтитов с изовалентным замещением в температурном интервале 100–1000 К и выявлено наличие двух максимумов в зависимости $\beta(T)$ для ряда значений концентрации легирования. Рассчитана скорость изменения заселенности высокоспинового состояния ионов кобальта с учетом спин-орбитального взаимодействия в исследуемых соединениях. Используя уравнение состояния Берча–Мурнагана, показано, что с увеличением химического давления низкотемпературный максимум теплового расширения смещается в область высоких температур и при давлении $P \approx 7$ GPa совпадает со вторым максимумом. Рассмотрена аналогия в поведении коэффициента теплового расширения между составами с изовалентным замещением $La_{1-x}Gd_xCoO_3$ и незамещенными составами $LnCoO_3$ (Ln – лантаноид). Установлена природа двух температурных особенностей в поведении теплоемкости и дилатации всего ряда редкоземельных оксидов кобальта и связь с заселенностью высокоспинового состояния ионов кобальта и переходом диэлектрик– металл.

DOI: 10.7868/S0370274X16090113

Перспективы использования редкоземельных кобальтитов с общей формулой Ln_{1-x}M_xCoO₃ (Ln – лантаноид, М – редкоземельный или щелочноземельный металл) в различных технологических процессах и устройствах [1–3], а также в качестве модельных материалов при изучении физических свойств поддерживают интерес к их исследованию более полувека [4-6]. Одной из особенностей кобальтитов являются флуктуации мультиплетности [7] ионов Co^{3+} , приводящие к особенностям магнитных, электрических и структурных свойств. Различные спиновые состояния ионов кобальта обусловлены конкуренцией между величиной внутриатомного обменного взаимодействия и энергией кристаллического поля и зависят от внешних условий - температуры и давления. Это приводит к тому, что ионы кобальта могут находиться в низкоспиновом (LS, $S = 0, t_{2q}^{6}$), в некоторых слоистых соединениях промежуточноспиновом (IS, $S = 1, t_{2g}^5 e_g^1$) и высокоспиновом (HS, S = 2, $t_{2q}^4 e_q^2$) состояниях. Роль внешнего давления может

Письма в ЖЭТФ том 103 вып. 9-10 2016

689

играть и химическое давление, возникающее при частичном изовалентном или полном замещении одного лантаноида на другой в составах LnCoO₃, приводя либо к стабилизации, либо дестабилизации основного низкоспинового состояния ионов Со³⁺ в зависимости от ионного радиуса замещающего элемента. Коэффициенты теплового расширения редкоземельных кобальтитов демонстрируют необычную температурную зависимость [8–10], показывая аномально большие значения. Дополнительные степени свободы, обусловленные флуктуациями мультиплетности, влияют также и на кинетические свойства – электропроводность и теплопроводность, приводя к необычно высоким термоэлектрическим свойствам кобальтитов [11]. Поэтому исследования необычных термодинамических свойств нестехиометричных кобальтитов представляют также интерес и с точки зрения новых термоэлектрических материалов.

В работе [12] на основе высокоточных данных по рентгеновской дифракции было обнаружено сосуществование двух типов доменов в GdCoO₃ при промежуточных температурах 200–700 K, имеющих

¹⁾e-mail: jso.krasn@mail.ru

Состав	$V/Z{ m \AA}^3$	Параметры ячейки, ${ m \AA}^3$
$LaCoO_3$	56.02 тригональная, $Z = 6$	$5.44459(2) \ 13.0931(1)$
$\mathrm{La}_{0.95}\mathrm{Gd}_{0.05}\mathrm{CoO}_{3}$	55.79 тригональная, $Z = 6$	$5.43871(7) \ 13.0675(2)$
$\rm La_{0.9}Gd_{0.1}CoO_3$	55.60 тригональная ($55%$),	$5.4337(1) \ 13.0467(5),$
	55.68 ромбическая (46 %)	5.4325(3) $5.3739(3)$ $7.6301(4)$
$\rm La_{0.8}Gd_{0.2}CoO_3$	55.38 ромбическая, $Z = 4$	5.4151(1) $5.3715(1)$ $7.6156(2)$
$\rm La_{0.5}Gd_{0.5}CoO_3$	54.16 ромбическая, $Z = 4$	5.3436(10) $5.3611(5)$ $7.5614(12)$
$GdCoO_3$	52.54 ромбическая, $Z = 4$	5.2256(3) $5.3935(2)$ $7.4568(1)$

Таблица 1. Объемы и параметры элементарной ячейки поликристаллических образцов $La_{1-x}Gd_xCoO_3$

одинаковую симметрию решетки, но отличающихся параметром "b" и объемом элементарной ячейки кристаллической решетки. Согласно первопринципным DFT-GGA расчетам было показано соответствие этих доменов двум возможным состояниям GdCoO₃ с HS- и LS-состояниями Co³⁺ и установлена необычная связь аномально большого коэффициента теплового расширения GdCoO₃ с изменением спинового состояния ионов Со³⁺. Тепловое расширение решетки приводит к уменьшению спиновой щели (энергетического интервала между высокоспиновым и низкоспиновым состояниями) и росту концентрации высокоспиновых состояний. С другой стороны, больший ионный радиус высокоспинового Со³⁺ приводит к дополнительному росту объема при нагревании. В результате вклад от флуктуаций мультиплетности в коэффициент теплового расширения в связи с большой разницей (около 10%) ионных радиусов HS-состояния ($r_{\rm HS}$ = 0.61 Å) и LS-состояния ($r_{\text{LS}} = 0.545 \text{ Å}$) на порядок превосходит обычный вклад от ангармонизма. Предложенная в работе [12] двухфазная модель качественно хорошо описывает дилатационные свойства для соединения GdCoO₃, но не объясняет наличие двух максимумов в температурной зависимости коэффициента теплового расширения для соединений $LnCoO_3$ (Ln = La, Pr, Nd), наблюдаемых в [8, 9, 10].

Целью этой работы является исследование взаимосвязи флуктуаций мультиплетности и перехода диэлектрик-металл со структурными и термодинамическими аномалиями редкоземельных кобальтитов. Для этого нами были исследованы тепловое распирение и молярная теплоемкость в соединениях редкоземельных кобальтитов с изовалентным замещением $La_{1-x}Gd_xCoO_3$ ($0 \le x \le 1$) в температурном диапазоне 100–1000 К, проведены расчеты заселенности высокоспинового состояния и проанализированы полученные данные.

Поликристаллические образцы $La_{1-x}Gd_xCoO_3$ (x = 0-1.0) были получены по стандартной керамической технологии. Высокочистые (99.9%) оксиды La_2O_3 , Gd_2O_3 и Co_3O_4 , взятые в стехиометрическом соотношении, тщательно смешивались в яшмовой ступке в этаноле. Далее смесь отжигалась на воздухе при температуре 1100 °C с тройным повторением циклов перетирание – прокалка. Спрессованные таблетки отжигались при той же температуре в течение 24 ч и охлаждались со скоростью 2 °C/мин до комнатной температуры.

Рентгенофазовый и рентгеноструктурный анализ проводился с использованием дифрактометра PANalytical X'Pert PRO (CoK α) в интервале углов 2θ 10–140°, съемка при высокой температуре проводилась в высокотемпературной камере Anton Paar HTK 1200N. Обработка результатов проведена с применением полнопрофильного анализа поликристаллических веществ, используя метод Ритвельда [13] и метод минимизации производной разности [14].

Данные по теплоемкости от 300 до 1073 К были рассчитаны по "методу отношений", используя дифференциальный сканирующий калориметр Netzsch STA Jupiter 449C, оснащенный специальным держателем образца для C_P -измерений, аналогично процедуре, описанной в [12].

Тепловое расширение исследовалось в диапазоне температур 100–1000 K на индукционном дилатометре Netzsch Dil-402C в динамическом режиме со скоростями нагрева и охлаждения 3-5 K/мин. Измерения проводились при продувке сухим гелием (в диапазоне 100–700 K) и "на воздухе" (в диапазоне 300– 1000 K).

Удельный объем и параметры ячейки образцов, измеренные при комнатной температуре, представлены в табл. 1, рентгенофазовый анализ не обнаружил следов посторонних примесей.

Подробное исследование GdCoO₃ [12] привело к выводу о температурной зависимости константы Кюри C_{eff} и температуры Кюри Θ_{eff} в выражении для молярной магнитной восприимчивости ионов Co³⁺ $\chi_{\text{Co}} = N_{\text{A}} \frac{C_{\text{eff}}}{3k_{\text{B}}(T-\Theta_{\text{eff}})}$, которые связаны с вероятностью заселенности высокоспинового состо-

Рис. 1. (Цветной онлайн) Экспериментальные температурные зависимости молярной теплоемкости, коэффициента объемного теплового расширения и рассчитанная зависимость $dn_{\rm HS}/dT$, характеризующая скорость заселения высокоспинового состояния. Данные C_P и коэффициента β для LaCoO₃ взяты из [21, 20] и [10] соответственно. Для наглядности, значения $dn_{\rm HS}/dT$ умножались на соответствующие составам коэффициенты. На рис. 1а штриховой линией показана решеточная теплоемкость C_L

яния $n_{\rm HS}$ и величиной спиновой щели Δ_S : $C_{\rm eff} = g^2 \mu_{\rm B}^2 S(S+1) n_{\rm HS}$, $\Theta_{\rm eff} = \frac{J_{\rm Co-Co} z S(S+1)}{3k_{\rm B}} n_{\rm HS}$, $n_{\rm HS} = \frac{J_{\rm Co-Co} z S(S+1)}{3k_{\rm B}} n_{\rm HS}$, $n_{\rm HS} = \frac{J_{\rm Co-Co} z S(S+1)}{3k_{\rm B}} n_{\rm HS}$ $\frac{g_{\rm HS} \exp(-\Delta_S/k_{\rm B}T)}{1+g_{\rm HS} \exp(-\Delta_S/k_{\rm B}T)},$ где $N_{\rm A}$ – число Авогадро, $k_{\rm B}$ – постоянная Больцмана, g = 2 – чисто спиновый фактор Ланде, $\mu_{\rm B}$ – магнетон Бора, S = 2 – спиновое состояние иона Co³⁺, J_{Co-Co} – интеграл обменного взаимодействия между ионами кобальта, $g_{\rm HS}$ = = 15 -кратность вырождения терма ${}^{5}T_{2q}$. Использование аналитического выражения для оценки значения спиновой щели [10] $\Delta_S(T) = \Delta_0 [1 - (T/T_S)^n],$ где Δ_0 – величина спиновой щели при $T = 0, T_S$ – температура, при которой спиновая щель обращается в ноль, путем подгонки параметров Δ_0 , *n* и T_S к результатам магнитных измерений дало для GdCoO₃ $\Delta_0 = 2300 \,\mathrm{K}, \, T_S = 800 \,\mathrm{K}, \, n = 4 \,$ [12], а для LaCoO₃ $\Delta_0 = 164 \,\mathrm{K}, T_S = 230 \,\mathrm{K}, n = 2.97 \,[10].$ B pacote [15] на основании экспериментальных данных по магнитной восприимчивости были определены значения Δ_0 , n и T_S для соединений La_{1-x}Gd_xCoO₃ (x = 0.2, 0.5,0.8). Эти данные позволили рассчитать зависимости $n_{\rm HS}(T)$ для заселенности высокоспиновых состояний

Письма в ЖЭТФ том 103 вып. 9-10 2016

в исследуемых соединениях и построить графические зависимости $dn_{\rm HS}/dT$ (рис. 1). Для сравнения местоположений максимумов на графиках значения $dn_{\rm HS}/dT$ умножались на соответствующие коэффициенты.

Экспериментальные температурные зависимости коэффициента объемного теплового расширения β , полученные в режимах нагрева и охлаждения, представлены на рис. 1. Заметных гистерезисных явлений не наблюдалось. Получено хорошее согласие в нескольких сериях измерений. Для коэффициента β для составов $La_{1-x}Gd_xCoO_3$ (x = 0, 0.2, 0.5) характерно наличие двух размытых аномалий - в области низких и высоких температур, которые ранее были исследованы в незамещенном LaCoO₃ [8, 10]. Видно, что низкотемпературный максимум на температурной зависимости коэффициента теплового расширения коррелирует с максимумом на зависимости $dn_{\rm HS}/dT$ (рис. 1а и b), указывая на его связь с переходом ионов Со³⁺ из низкоспинового в высокоспиновое состояние. С увеличением содержания гадолиния, оба максимума смещаются в область более высоких температур. При этом смещение первого максимума происходит значительно быстрее и при уровне допирования между x = 0.5 и x = 0.8происходит их слияние. Используя уравнение состояния Берча–Мурнагана [16, 17] для оценки по методу [18] дополнительного химического давления, возникающего в результате лантаноидного сжатия, было получено "критическое" значение этого давления $P_C \approx 7 \,\mathrm{GPa}$, в окрестности которого низкотемпературный максимум на зависимости коэффициента теплового расширения исчезает. Правильность оценки Р_С подтверждается наличием второго максимума для PrCoO₃ и NdCoO₃ и его отсутствием для SmCoO₃ [9, 10]. Похожий сдвиг наблюдался ранее для системы твердых растворов $La_{1-x}Eu_xCoO_3$ [19]. На рис. 2 показана зависимость объема элементарной

Рис. 2. (Цветной онлайн) Зависимость объема элементарной ячейки для $La_{1-x}Gd_xCoO_3$ от степени допирования x и соответствующее значение добавочного химического давления. Стрелками указаны значения объемов для $PrCoO_3$, $NdCoO_3$ и $SmCoO_3$. Экспериментальные значения объемов указаны точками и соединены сплошной линией для наглядности

ячейки для $La_{1-x}Gd_xCoO_3$ от степени допирования x и соответствующее значение добавочного химического давления.

Результаты измерения теплоемкости представлены на рис. 1. Видно, что высокотемпературные аномалии, не связанные с флуктуациями мультиплетности, в области высоких температур являются достаточно значительными. Для определения характеристик, связанных с этими аномалиями, выполнено разделение молярной теплоемкости для составов $La_{1-x}Gd_xCoO_3$ на регулярную составляющую (решеточную теплоемкость) C_L и аномальный вклад ΔC . Для определения вклада в теплоемкость от ангармонической составляющей и свободных электронов использовалась линейная комбинация функций Дебая и Эйнштейна с дополнительным линейным членом: $C_L(T) = aC_D(T) + bC_E(T) + cT$. Для подгонки $C_L(T)$ к результатам измерений были использованы данные, полученные в [20] для LaCoO₃ в температурном диапазоне ниже 40 и выше 450 K и данные для YbCoO₃ в интервале температур 300–510 K [21], где аномальный вклад в теплоемкость образцов достаточно мал. Результаты для $C_L(T)$ представлены на рис. 1а пунктирной линией. Аномальные вклады $\Delta C(T)$ для La_{1-x}Gd_xCoO₃ (x = 0, 0.2, 0.5, 0.8, 1) представлены на рис. 3а. Представленная модель,

Рис. 3. (Цветной онлайн) Температурные зависимости аномальной теплоемкости $\Delta C(T)$ и аномального вклада в энтропию $\Delta S(T)$ для составов La_{1-x}Gd_xCoO₃ (x = 0, 0.2, 0.5, 0.8, 1). Для LaCoO₃ $\Delta C(T)$ и $\Delta C(T)$ представлены во всем рассматриваемом температурном диапазоне

безусловно, является упрощенной и несет достаточно грубую оценку для аномальной теплоемкости и связанной с ней аномальной энтропии.

На графической зависимости $\Delta S(T)$ для составов La_{1-x}Gd_xCoO₃ (рис. 3b) видны два вклада в

поведение энтропии, которые связаны соответственно с изменением спинового и электронного состояний. Для твердого раствора $La_{0.8}Gd_{0.2}CoO_3$ энтропия близка к энтропии высокотемпературной аномалии $LaCoO_3$, для $La_{0.5}Gd_{0.5}CoO_3$ энтропия представляет промежуточное значение – наблюдается вклад от низкотемпературной аномалии, а для $La_{0.2}Gd_{0.8}CoO_3$ – близка к суммарной энтропии низкотемпературной и высокотемпературной аномалии к а для $La_{0.2}Gd_{0.8}CoO_3$ – близка к суммарной энтропии низкотемпературной и высокотемпературной аномалии, а для La_0.2Gd_0.8CoO_3 – близка к суммарной энтропии низкотемпературной и высокотемпературной аномалий незамещенных $LaCoO_3$ и $GdCoO_3$. Аналогичные закономерности прослеживаются также в поведении полной (рис. 1) и аномальной теплоемкости (рис. 3а) с ростом концентрации гадолиния в составе $La_{1-x}Gd_xCoO_3$.

Теплоемкость постоянном давлении при есть производная энтальпии W E + PVпо температуре $C_p = \frac{\partial W}{\partial T}|_P$. Внутреннюю энергию можно представить в виде: E(T) = $n_{\rm HS}(T) E_{\rm HS}(T) + n_{\rm LS}(T) E_{\rm LS}(T)$, где $n_{\rm HS}$ и n_{LS} – заселенности высокоспинового (HS) и низкоспинового (LS) состояний соответственно, а $E_{\rm HS}$ и $E_{\rm LS}$ – их энергии. Поскольку $n_{\rm LS} = 1 - n_{\rm HS}$, мы получаем $E(T) = E_{\rm LS}(T) + n_{\rm HS}(T)\Delta_S(T),$ где $\Delta_S(T) = E_{\text{HS}}(T) - E_{\text{LS}}(T)$, т.н. спиновая щель (энергетический интервал между HS- и LSсостояниями). Аналогично для удельного объема будем иметь: $V(T) = V_{\rm LS}(T) + n_{\rm HS}(T)\Delta V(T)$, где $\Delta V(T) = V_{\text{HS}}(T) - V_{\text{LS}}(T)$. Таким образом, выражения для энтальпии и теплоемкости системы принимают вид: $W = E_{\rm LS} + n_{\rm HS}\Delta_S +$ $\begin{array}{l} + PV_{\rm LS} + Pn_{\rm HS}\Delta V = W_{\rm LS} + n_{\rm HS} \left(\Delta_S + P\Delta V\right) ~{\rm ir}~ C_p = \\ \frac{\partial W_{\rm LS}}{\partial T} \Big|_P + \frac{\partial n_{\rm HS}}{\partial T} \left(\Delta_S + P\Delta V\right) + n_{\rm HS} \left(\frac{\partial \Delta_S}{\partial T} + P\frac{\partial \Delta V}{\partial T}\right). \\ 3 \text{десь}~ \frac{\partial W_{\rm LS}}{\partial T} \Big|_P = C_p^{\rm LS} - \text{теплоемкость системы в LS-} \end{array}$ состоянии можно рассматривать как некий фон. Ион кобальта в различных спиновых состояниях имеет различный ионный радиус $(r_{\rm HS} > r_{\rm LS})$, поэтому изменение объема с температурой $\Delta V(T)$ можно представить в виде суммы двух вкладов. Первый обусловлен изменением объема элементарной ячейки при спиновом переходе иона переходного металла, а второй - тепловым расширением решетки, или ангармонизмом: $\Delta V = V_{\rm HS}^{(0)} (1 + \beta_{\rm HS} T) - V_{\rm LS}^{(0)} (1 + \beta_{\rm LS} T) = \Delta V_0 + T \left(\beta_{\rm HS} V_{\rm HS}^{(0)} - \beta_{\rm LS} V_{\rm LS}^{(0)} \right)$, где $V_{\rm HS}^{(0)}$ и $V_{\rm LS}^{(0)}$ – объемы элементарных ячеек в НS- и LS-состояниях при нулевой температуре, соответственно, а $\beta_{\rm HS}$ и $\beta_{\rm LS}$ – коэффициенты теплового расширения. Тогда $\frac{\partial \Delta V}{\partial T}$ = $\beta_{\rm HS} V_{\rm HS}^{(0)} - \beta_{\rm LS} V_{\rm LS}^{(0)}, \text{ a } C_p - C_p^{\rm LS} = \frac{\partial n_{\rm HS}}{\partial T} \left(\Delta_S + P \Delta V \right) + n_{\rm HS} \left[\frac{\partial \Delta_S}{\partial T} + P \left(\beta_{\rm HS} V_{\rm HS}^{(0)} - \beta_{\rm LS} V_{\rm LS}^{(0)} \right) \right].$

При атмосферном давлении можно пренебречь слагаемыми, пропорциональными давлению. В этом приближении мы имеем $C_p - C_p^{\rm LS} \approx \frac{\partial n_{\rm HS}}{\partial T} \Delta_S +$

Письма в ЖЭТФ том 103 вып. 9-10 2016

 $n_{\rm HS} \frac{\partial \Delta_S}{\partial T}$, т.е. вклад, обусловленный заселенностью HS-состояния. Все редкоземельные оксиды кобальта и их твердые растворы испытывают плавный переход диэлектрик – металл при нагревании. Дополнительный электронный вклад в теплоемкость можно приближенно описать как $C_e \sim \frac{\partial}{\partial T} \left(\frac{E_g(T)}{e^{E_g(T)/2kT} + 1} \right)$, где $E_g(T)$ – диэлектрическая цель. Температурные зависимости $E_g(T)$ и $\Delta_S(T)$ для ряда редкоземельных кобальтитов были рассчитаны нами ранее в работах [12, 15]. На рис. 4 приведена температурная за-

Рис. 4. (Цветной онлайн) Температурная зависимость двух особенностей теплоемкости для LaCoO₃ (a), La_{0.8}Gd_{0.2}CoO₃ (b) и GdCoO₃ (c)

висимость суммы двух вкладов $(C_p - C_p^{\rm LS}) + C_e$ для LaCoO₃ (a), La_{0.8}Gd_{0.2}CoO₃ (b) и GdCoO₃ (c). Видно, что с ростом концентрации гадолиния наблюдается сдвиг низкотемпературной особенности теплоемкости $C_p - C_p^{\rm LS}$, обусловленной термической заселенностью HS-состояния, в область более высоких температур вследствие увеличения спиновой щели и постепенное слияние двух вкладов.

Совместный анализ теплоемкости и коэффициента теплового расширения редкоземельных оксидов кобальта и их твердых растворов показывает, что имеются характерные аномалии в их температурной зависимости, обусловленные заселенностью высокоспинового состояния ионов кобальта и появлением дополнительного электронного вклада при переходе диэлектрик – металл с ростом температуры. С уменьшением радиуса редкоземельного элемента или увеличением химического давления происходит увеличение спиновой щели в этих соединениях и наблюдается сдвиг низкотемпературной особенности в область более высоких температур и постепенное слияние двух вкладов. Для всего ряда LnCoO₃ зависимость спиновой щели от давления была приведена на рис. 3 в работе [18]. Для более тяжелых по сравнению с Gd лантаноидов спиновая щель больше 2000 К и достигает величины 3700 K для Lu, что поясняет стабилизацию низкоспинового состояния ионов кобальта и отсутствие низкотемпературных аномалий в магнитных и термодинамических свойствах. Приведенные теоретические расчеты теплоемкости качественно описывают экспериментальное поведение двух температурных особенностей и подтверждают сделанные нами выводы. Именно совместный анализ новых экспериментальных данных по дилатации и теплоемкости твердых растворов La_{1-x}Gd_xCoO₃ и теоретический расчет теплового расширения и теплоемкости с учетом вкладов от флуктуаций мультиплетности и металлизации в настоящей статье позволили достаточно полно определить причину отсутствия двух максимумов в термодинамических характеристиках для редкоземельных кобальтитов с тяжелыми лантаноидами.

Работа выполнена при финансовой поддержке РФФИ (гранты #16-02-00507, 16-02-00098), стипендии Президента РФ (СП-1844.2016.1). Выполнение рентген-дифракционного анализа кристаллической структуры и определение теплоемкости проводилось в рамках выполнения проекта V.45.3.1.

- C. R. Michel, A. H. Martinez, F. Huerta-Villalpando, and J. P. Moran-Lazaro, J. Alloys and Compounds 484, 605 (2009).
- T. Inagaki, K. Miura, H. Yoshida, R. Maric, S. Ohara, X. Zhang, K. Mukai, and T. Fukui, J. Power Sources 86, 347 (2000).
- C. H. Chen, H. J. M. Bouwmeester, R. H. E. van Doorn, H. Kruidhof, and A. J. Burggraaf, Sol. State Ionics 98, 7 (1997).
- 4. N. B. Ivanova, S. G. Ovchinnikov, M. M. Korshunov,

I.M. Eremin, and N.V. Kazak, Phys.-Usp. **52**, 789 (2009).

- И.О. Троянчук, Д.В. Карпинский, А.Н. Чобот, В.М. Добрянский, Письма в ЖЭТФ 84, 180 (2006).
- И. О. Троянчук, А. Н. Чобот, Н. В. Терешко, Д. В. Карпинский, В. Ефимов, В. Сиколенко, ЖЭТФ 139, 957 (2011).
- S. V. Vonsovskii and M. S. Svirskii, J. Exp. Theor. Phys. 20 (5), 914 (1965).
- P.G. Radaelli and S.-W. Cheong, Phys. Rev. B 66, 094408 (2002).
- K. Berggold, M. Kriener, P. Becker, M. Benomar, M. Reuther, C. Zobel, and T. Lorenz, Phys. Rev. B 78, 134402 (2008).
- K. Knizek, J. Jirak, J. Hejtmanek, M. Veverka, M. Marysko, G. Maris, and T. T. M. Palstra, Eur. Phys. J. B 47, 213 (2005).
- H. Hashimoto, T. Kusunose, and T. Sekino, Materials Transactions 51, 404 (2010).
- 12. Yu.S. Orlov, L.A. Solovyov, V.A. Dudnikov, A.S. Fedorov, A.A. Kuzubov, N. V. Kazak, V.N. Voronov, S.N. Vereshchagin, N.N. Shishkina, Perov, K.V. Lamonova, N. S. R. Yu. Babkin, Yu.G. Pashkevich, A.G. Anshits, and S. G. Ovchinnikov, Phys. Rev. B 88, 235105 (2013).
- 13. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
- 14. L.A. Solovyov, J. Appl. Cryst. **37**, 743 (2004).
- S. G. Ovchinnikov, Yu.S. Orlov, V.A. Dudnikov, S. N. Vereshchagin, and N.S. Perov, JMMM 383, 162 (2015).
- 16. F.J. Birch, Phys. Rev. 71, 809 (1947).
- 17. F. J. Birch, J. Geophys. Res. 91, 4949 (1986).
- В.А. Дудников, С.Г. Овчинников, Ю.С. Орлов, Н.В. Казак, С.R. Michel, Г.С. Патрин, Г.Ю. Юрьев, ЖЭТФ 141, 966 (2012).
- J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Phys. Rev. B 71, 014443 (2005).
- S. Stolen, F. Gronvold, and H. Brinks, Phys. Rev. B 55, 14103 (1997).
- M. Tachibana, T. Yoshida, H. Kawaji, T. Atake, and E. Takayama-Muromachi, Phys. Rev. B 77, 094402 (2008).