Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-121
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 103 (2016) | ISSUE 10 | PAGE 711
Brane realization of q-theory and the cosmological constant problem
Abstract
We discuss the cosmological constant problem using the properties of a freely-suspended two-dimensional condensed-matter film, i.e., an explicit realization of a 2D brane. The large contributions of vacuum fluctuations to the surface tension of this film are cancelled in equilibrium by the thermodynamic potential arising from the conservation law for particle number. In short, the surface tension of the film vanishes in equilibrium due to a thermodynamic identity. This 2D brane can be generalized to a 4D brane with gravity. For the 4D brane, the analogue of the 2D surface tension is the 4D cosmological constant, which is also nullified in full equilibrium. The 4D brane theory provides an alternative description of the phenomenological q-theory of the quantum vacuum. As for other realizations of the vacuum variable q, such as the 4-form field-strength realization, the main ingredient is the conservation law for the variable q, which makes the vacuum a self-sustained system. For a vacuum within this class, the nullification of the cosmological constant takes place automatically in equilibrium. Out of equilibrium, the cosmological constant can be as large as suggested by naive estimates based on the summation of zero-point energies. In this brane description, q-theory also corresponds to a generalization of unimodular gravity.