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Evolution of solitons is addressed in the framework of a third- order nonlinear Schrödinger equation

(NLSE), including nonlinear dispersion, third-order dispersion and a pseudo-stimulated-Raman-scattering

(pseudo-SRS) term, i.e., a spatial-domain counterpart of the SRS term which is well known as a part of

the temporal-domain NLSE in optics. In this context, it is induced by the underlying interaction of the

high-frequency envelope wave with a damped low-frequency wave mode. Also spatial inhomogeneity of the

second-order dispersion (SOD) is assumed. As a result it is shown that the wavenumber downshift of solitons,

caused by the pseudo-SRS, can be compensated with the upshift provided by decreasing SOD coefficients.

Analytical results and numerical results are in a good agreement.
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1. Introduction. The great interest to the dynam-

ics of solitons is motivated by their ability to travel long

distances keeping the shape and transferring the en-

ergy and information without losses. Soliton solutions

are relevant to nonlinear models in various areas of

physics which deal with the propagation of intensive

wave fields in dispersive media: optical pulses and beams

in fibers and spatial waveguides, electromagnetic waves

in plasma, surface waves on deep water, etc. [1–7]. Re-

cently, solitons have also drawn a great deal of interest

in plasmonics [8–10].

Dynamics of long high-frequency (HF) wave pack-

ets is described by the second-order nonlinear dispersive

wave theory. The fundamental equation of the theory

is the nonlinear Schrödinger equation (NLSE) [11, 12],

which includes the second-order dispersion (SOD) and

cubic nonlinearity (self-phase modulation). Soliton so-

lutions in this case arise as a result of the balance be-

tween the dispersive streach and nonlinear compression

of wave packets. In particular, invariant-shape solutions

for damped solitons were found in the framework of the

NLSE including linear losses of HF waves and spatially-

decreasing SOD [4, 13].

The dynamics of narrow HF wave packets is de-

scribed by the third-order nonlinear dispersive wave the-

ory [1], which takes into account the nonlinear disper-

sion (self-steeping) [14], stimulated Raman scattering

(SRS) [15–17] and third-order dispersion (TOD). The

1)e-mail: vtyutin@hse.ru

basic equation of the theory is the extended (third-

order) NLSE [17–21]. Soliton solutions in the frame-

work of the extended NLSE with TOD and nonlinear

dispersion were found in [22–29]. In [30, 31] station-

ary kink waves were found as solutions of the extended

NLSE with SRS and nonlinear dispersion terms. This

solution exists as the equilibrium between the nonlin-

ear dispersion and SRS. For localized nonlinear wave

packets (solitons), the SRS leads to the downshift of

the soliton spectrum [15–17] and eventually to desta-

bilization of solitons. The use of the balance between

the SRS and the slope of the gain for the stabilization

of solitons in long telecom links was proposed in [32].

The compensation of the SRS by emission of linear ra-

diation fields from the soliton’s core was considered in

[33]. In addition, the compensation of the SRS in inho-

mogeneous media was considered in several situations:

periodic SOD [34, 35], shifting zero-dispersion point of

SOD [36], and dispersion- decreasing fibers [37].

Intensive short pulses of HF electromagnetic or

Langmuir waves in plasmas, as well as HF surface waves

on deep stratified water, suffer effective induced damp-

ing due to scattering on low-frequency (LF) waves,

which, in turn, are subject to the action of viscosity.

These LF modes are ion-sound waves in the plasma, and

internal waves in the stratified fluid. The first model for

the damping induced by the interaction with the LF

waves was proposed in [38, 39]. This model gives rise to

an extended NLSE with the spatial-domain counterpart

of the SRS term, that was call a pseudo-SRS one. The
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equation was derived from the system of the Zakharov’s

type equations [40] for the coupled Langmuir and ion-

acoustic waves in plasmas. The pseudo-SRS leads to

the self-wavenumber downshift, similar to what is well

known in the temporal domain [1, 14–17] and, eventu-

ally, to destabilization of the solitons. The model equa-

tion elaborated in [38, 39] also included smooth spatial

variation of the SOD, accounted for by a spatially de-

creasing SOD coefficient, which leads to an increase of

the soliton’s wavenumber, making it possible to com-

pensate the effect of the pseudo-SRS on the soliton by

the spatially inhomogeneous SOD. The equilibrium be-

tween the pseudo-SRS and decreasing SOD gives rise

to stabilization of the soliton’s wavenumber spectrum.

To this time the soliton dynamics was considered in the

model neglecting the nonlinear dispersion and the TOD.

In this work the soliton dynamics is considered in

the frame of third- order NLSE with a spatial stimu-

lated Raman scattering, nonlinear dispersion, TOD and

decreasing SOD. The equilibrium between the pseudo-

SRS and decreasing SOD is considered. The equilibrium

condition for pseudo-SRS, SOD gradient and soliton’s

amplitude is found. In case of TOD larger nonlinear

dispersion multiplied by relative pseudo-SRS the equi-

librium of the soliton state is stable, and it is unstable

in inverse case.

2. The basic equation and integral relations.

Let’ s consider the dynamics of the HF wave field

U (ξ, t) exp (−iωt+ ikξ) in the frame of inhomogeneous

third-order NLSE with pseudo-SRS, nonlinear disper-

sion, TOD and inhomogeneous SOD:

2i
∂U

∂t
+

∂

∂ξ

[

q (ξ)
∂U

∂ξ

]

+ 2U |U |2 + 2iβ
∂
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+iγ
∂3U

∂ξ3
+ µU

∂
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|U |2
)

∂ξ
= 0, (1)

where q (ξ) is the SOD, µ is the pseudo-SRS, β is the

nonlinear dispersion, γ is the TOD coefficients.

Eq. (1) with zero boundary conditions on infinity,

U |ξ→±∞ → 0 , has the integrals:
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dξ,

where U ≡ |U | exp (iφ), K ≡ ∂φ/∂ξ is the wavenum-

ber of wave packet, ξ (t) is coordinate of wave packet’s

center-mass.

3. Analytical results. For analytical solution of

the system (2)–(4) let’s consider a values of nonlinear

dispersion, TOD, and wavenumber are small, β, γ,K ∼
ε ≪ 1. Neglecting values by order ε2, imaginary part of

(1) will be the following:

∂|U |2
∂t

+
∂

∂ξ

(

qK |U |2 + 3

2
β|U |4

)

+ γ|U |∂
3 (|U |)
∂ξ3

= 0.

Assuming wave packets moving with keeping the shape,

∂
(

|U |2
)

/∂t ≈ −V ∂
(

|U |2
)

/∂ξ, where V is packet’s ve-

locity, we have from last equation:

∂

∂ξ

(

−V |U |2 + qK |U |2 + 3

2
β |U |4

)

+γ |U | ∂
3 (|U |)
∂ξ3

= 0.

Integrating the last equation for localize wave packets,

|U |ξ→−∞ → 0, and assuming the scale of the inhomo-

geneity of SOD is much larger than the inhomogeneity

scale of the wave-packet envelope, D ≫ D|U|, gives rise

to a relation for the wavenumber:

K = k(t)−3β|U |2
2q

(

ξ
) +

γ

2q
(

ξ
)

|U |2

[

∂ (|U |)
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]2

− γ

q
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ξ
)

|U |
∂2 (|U |)
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,

where k (t) = V/q
(

ξ
)

. Solution of the system (2)–(4)

will be found in adiabatic approximation, presenting so-

lution in sech-like form with last wavenumber distribu-

tion:

U (ξ, t) =
A (t)

cosh
[(

ξ − ξ
)

/∆(t)
] ×

× exp

[

i

∫

K (ξ, t) dξ − i

2

∫

A2 (t) dt

]

, (5)

K (ξ, t) = k (t)− 3

2

βA2 (t)

q
(

ξ
)

cosh2
[(

ξ − ξ
)

/∆(t)
]−

−3

2

γ

q
(

ξ
)

∆2 (t)
tanh2

[

ξ − ξ

∆(t)

]

+
γ

q
(

ξ
)

∆2 (t)
, (6)

where ∆(t) ≡
√

q
(

ξ
)

/A (t) and A2 (t)∆ (t) = const.

Solution (5), (6) has two free parameters: an additional

wavenumber k (t) and a coordinate of center-mass ξ (t).
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Substituting (5), (6) in (2)–(4) and keeping terms by

order ε we have the system for k and ξ (t):

2
dk

dt
= − 8q20A

4
0µ

15q3
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2
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′
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where q0 = q (0), A0 = A (0), q′
(

ξ
)

= (dq/dξ)ξ. Sys-

tem (7) gives rise to an obvious equilibrium state (alias

fixed point, FP): 8q0A
2
0µ = −5q′

(

ξ∗
)

q
(

ξ∗
)

, k∗ = 0. In

particular, for

µ = µ∗ ≡ 5q′ (0) /
(

8A2
0

)

, (8)

the FP corresponds to initial soliton parameters: ξ = 0,

k = 0. For µ 6= µ∗ soliton‘s parameters are time-varying.

To analyze the evolution around the FP, we assume lin-

early decreasing SOD, q′ = const < 0, and rescale the

variables by defining τ ≡ tq′A0/
√
3q0, y ≡ k

√
3q0/A0

and n ≡ q
(

ξ
)

/q0. Then system (7) is reduced to

2
dy

dτ
= − λ

n3
+

1

n2
+ y2−σ

y

n3
+ δ

y

n2
,

dn

dt
= −ny, (9)

where λ ≡ −8µA2
0/ (5q′) ≡ µ/µ∗, σ ≡ 2

√
3γA0/

√

q30 ,

δ ≡ 2
√
3βA0/

√

q30 . The FP of the (9) in rescale vari-

ables is y∗ = 0, n∗ = λ. For I ≡ σ − λδ > 0 the FP is

the stable focus, I = 0: center, I < 0: unstable focus. For

µ = µ∗ ≡ 5q′/
(

8A2
0

)

, corresponding to λ = 1, the FP

coincide with initial soliton’s parameter n0 ≡ 1, y0 = 0.

In this case soliton’s parameters are constant at time.

4. Numerical results. We now aim to solve the

initial-value problem for the dynamics of the wave

packet, U (ξ, t = 0) = exp [iφ (ξ)] / cosh ξ, with spa-

tial phase distribution φ (ξ) = − (3/2)β tanh ξ −
(3/2)γ (ξ − tanh ξ)+γξ (corresponding to wavenumber

K (ξ) = dφ/dξ ≡ −3β/
(

2 cosh2 ξ
)

−(3/2)γ tanh2 ξ+γ),

in the framework of (1), for q (ξ) = 1− ξ/10 and differ-

ent values of µ, β and γ numerically. The analytically

predicted equilibrium value of strength of the pseudo-

SRS term from (9) for the initial pulse is µ∗ = 1/16.

In direct simulations the initial pulse for µ = µ∗ and

I = 2
√
3 [γ − β] ≡ 2

√
3 [γ − (µ/µ∗)β] ≥ 0 is trans-

formed into a stationary localized distribution. For I < 0

the initial pulse is unstable at time.

Variation of the parameter µ leads to the soli-

ton‘s parameters variation (wavenumber and ampli-

tude). For example, for µ = 5/64 ≡ (5/4)µ∗ and

I = 2
√
3 [γ − (5/4)β] ≡ 2

√
3 [γ − (µ/µ∗) β] > 0 the

soliton’s parameters make several fluctuations and tend

to constant values (asymptotically stable soliton). For

µ = 5/64 and I = 0 the soliton’s parameters vary pe-

riodically with constant period and scope (dynamically

stable soliton). For µ = 5/64 and I < 0 the soliton’s

parameters change with increasing scale (unstable soli-

ton).

In Fig. 1 numerical simulation of the value of co-

ordinate point of the maximum modulus of the wave-

Fig. 1. Numerical results (solid curves) for ξm and analyti-

cal results (dotted curves) for ξ versus time for µ = 5/64 ≡

(5/4) µ∗, and different values of I

packet’s shape ξm (max |U (ξ, t)| = |U (ξm, t)|) as a

time function, are compared with the analytical coun-

terparts of the mass-center wave-packet envelope ξ ≡
q0 (n− 1) /q′ obtained from (7) for µ = 5/64 ≡
(5/4)µ∗ and different values of I = 2

√
3 [γ − (5/4)β] ≡

2
√
3 [γ − (µ/µ∗)β].

In Fig. 2, numerical results produced, as functions

of time, by the simulations for the value knum (t) =

K (ξm, t) + (3/2)β |U (ξm, t)|2 /q (ξm) at the point of

maximum modulus wave-packet’s shape ξm, are com-

pared with the analytical counterparts of additional

wavenumber k (t) (see relation (6)) obtained from (7)

for µ = 5/64 ≡ (5/4)µ∗ and different values of I =

2
√
3 [γ − (5/4)β] ≡ 2

√
3 [γ − (µ/µ∗)β]. Close agree-

ment between the analytical and numerical results is

demonstrated in the figure. A similar results agreement

at other parameter’s values is observed too.

5. Conclusion. In the work the soliton’s dynam-

ics is studied in the framework of third-order NLSE

with pseudo-SRS term (induced by the interaction of

the HF waves with damped LF modes), nonlinear dis-

persion, TOD and linearly decreasing SOD. The solitons

exist due to the balance between the self-wavenumber
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Fig. 2. Numerical results (solid curves) for the knum and

analytical results (dotted curves) for the value k versus

time for µ = 5/64 ≡ (5/4) µ∗, and different values of I

downshift, caused by the pseudo-SRS term, and the up-

shift induced by the inhomogeneous SOD. The equi-

librium value of the pseudo-SRS, depended on soliton

amplitude and SOD gradient, is found. Exactly in the

equilibrium state the soliton’s parameters is constant

in time. This equilibrium state can be stable or un-

stable. It is found: for TOD larger nonlinear disper-

sion multiplied by relative psevudo-SRS, initial wave

packet tends to stable soliton form (soliton’s asymp-

totical stability); for TOD equal to nonlinear dispersion

multiplied by relative psevudo-SRS, soliton parameters

are periodically vary (soliton’s dynamical stability); for

TOD smaller nonlinear dispersion multiplied by relative

psevudo-SRS, initial wave packet is destroyed (soliton’s

instability). The results were obtained by means of nu-

merical and analytical methods. Results of the numeri-

cal experiments prove: the analytical results are correct.
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