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The occurrence of a Mott-like gap in single-particle spectra of electron

systems possessing flat bands
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An unconventional type of the Mott’s insulators where the gap in the spectrum of single-particle excitations

is associated with repulsive effective interactions between quasiparticles is shown to exist in strongly corre-

lated electron systems of solids that possess flat bands. The occurrence of this gap is demonstrated to be the

consequence of violation of particle-hole symmetry, inherent in such systems. The results obtained are applied

to elucidate the Fermi arc structure observed at temperatures up to 100 K in angle-resolved photoemission

spectra of the compound Sr2IrO4, not showing superconductivity down to low T .
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The present article is devoted to the analysis of spec-

tra ǫ(p) of single-particle excitations of strongly corre-

lated electron systems of solids within a flat-band sce-

nario developed in Refs. [1–5]. In this scenario, non-

Fermi-liquid (NFL) behavior of such systems, experi-

mentally studied for more than 20 years, is attributed

to the occurrence of flat bands (zero-energy fermions),

a T = 0 dispersionless portion ǫ = 0 of the single-

particle spectrum, frequently called the fermion conden-

sate (FC). Originally, basic aspects of theory of fermion

condensation that properly elucidates NFL behavior of

strongly correlated Fermi systems (see, e.g., [6–14]) were

developed on the base of the Landau approach to FL

theory where the ground state energy E is treated as a

functional of the quasiparticle momentum distribution

n(p). A crucial point is that the ground-state momen-

tum distribution n∗(p) of a system with the FC is found

with the aid of variational condition [1]

δE

δn(p)
− µ = 0, p ∈ Ω. (1)

Since in normal states, examined in this article, the l.h.s.

of this condition is nothing but the quasiparticle energy

ǫ(p) measured from the chemical potential µ, this equa-

tion implies the formation of the FC in the momentum

region p ∈ Ω, where n∗(p) changes continuously be-

tween 0 and 1. In the complementary domain p /∈ Ω,

associated with quasiparticles, not belonging to the FC,

the distribution n∗(p) coincides with the FL one, being

1 for the occupied states and 0, otherwise.

1)e-mail: vak@wuphys.wustl.edu

Within theory of fermion condensation [1–5], the dis-

persion of the spectrum of such quasiparticles, called

further normal, is evaluated in terms of a phenomeno-

logical interaction function f(p,p1) with the aid of Lan-

dau equation

∂ǫ(p)

∂p
=

p

M
+

∫

f(p,p1)
∂ǫ(p1)

∂p1
dp1, p /∈ Ω, (2)

where dp is the volume element in momentum space,

including the factor (2π)i in the denominator, with i,

being dimensionality of the problem.

Results of numerous calculations (see, e.g., Ref. [14])

demonstrate that there is no gap, separating this nor-

mal part of the spectrum ǫ(p) from the dispersionless

FC one. The purpose of the present article is to check

whether this feature holds, going beyond the scope of

the existing version of theory of fermion condensation.

As we will see, it does not: if interactions between the

FC and normal quasiparticles are taken into account

properly, a gap emerges that separates the FC spectrum

from that of normal quasiparticles.

Here we address the case T = 0. Since at finite T ,

the FC dispersion changes linearly with T [3], the T = 0

results obtained below hold at low T , as long as the gap

value D(0) exceeds the FC width ∝ ρFCT . Otherwise,

corrections to results obtained within the existing ver-

sion of theory are of no interest, being small.

To gain insight into the problem it is advantageous

to employ the Belyaev’s diagram technique developed

in his work on theory of Bose liquid [15]. In doing so we

treat results of numerical solving the set of Eqs. (1) and
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(2) for the momentum distribution n∗(p) and energy

spectrum, denoted further ǫ0(p), as an initial iterate.

Since every integration over the FC domain intro-

duces an additional small dimensionless factor η =

= ρFC/ρ, the full set of the diagrams under consider-

ation can be divided into subsets vs. the amount of the

FC lines displayed. This situation is opposite to that

in low-density Bose gas where just occupation num-

bers of normal quasiparticles, proportional to the dif-

ference between the total density and condensate one,

are small [16].

The simplest way to generalize the existing version of

theory of fermion condensation is to straightforwardly

evaluate the imaginary part Σ′′ of the mass operator

of the normal quasiparticle and then calculate the real

part Σ′ with the aid of the Kramers–Kronig dispersion

relation. Therefore it is instructive to begin the analysis

with remembering basic points of evaluation of Σ in FL

theory where formula for Σ′′ reads [17]:

Σ′′(p, ε) ∝ −

∫∫

|Γ2(p,p1,p2,p3)|δ(ε+ ǫ3 − ǫ1 − ǫ2)

(

n3(1− n1)(1 − n2)− (1 − n3)n1n2

)

dp1dp2. (3)

Here Γ stands for the scattering amplitude, and nk =

= θ(−ǫk) are T = 0 quasiparticle occupation numbers,

where ǫk = ǫ(pk), with k = 1, 2, 3 and p3 = p1+p2−p,

are single-particle energies.

Strictly speaking, the exact T = 0 formula for Σ′′

does contain the product of three spectral functions

A(p, ε) ∝
|Σ′′(p, ε)|

[ε− ǫ0(p) − Σ′(p, ε)]2 + [Σ′′(p, ε)]2
, (4)

associated with imaginary parts of respective quasipar-

ticle Green functions G(p, ε) = (ε− ǫ0(p)−Σ(p, ε))−1.

However, in conventional Fermi liquids, the damping

γ(ε) of single-particle excitations is quadratic in energy:

γ(ε) ∝ −Σ′′(ε > 0) ∝ ε2, (5)

implying that it is small compared with energy. Indeed,

in Eq. (3) integration virtually occurs over 3 positive

energies ǫ1, ǫ2, and −ǫ3, confined to the interval [0, ε],

the number of integrations reducing to 2 by virtue of

the presence of δ(ε+ ǫ3 − ǫ1 − ǫ2) in the integrand. As

a result, each of two remaining integrations introduces

the factor ε to yield Eq. (5) and justify the replacement

A(p, ε) → δ(ε− ǫ(p)).

Once the imaginary part Σ′′ of the mass operator

changes continuously through the Fermi surface, so does

its real part Σ′(p, ε) as well. In this case, the single-

particle spectrum ǫ(p), evaluated from standard equa-

tion

ǫ(p) = ǫ0(p) + Σ′(p, ǫ(p)), (6)

with the bare spectrum ǫ0(p), turns out to be gapless.

However, in Fermi systems with flat bands, Eq. (5)

fails, since in calculations of Eq. (3) two energies associ-

ated with FC quasiparticles identically vanish, so that

the number of energy integrations reduces from 3 to 1,

and consequently, the factor ε2, identifying conventional

Fermi liquids, disappears. As a result, the damping γ(ε)

turns out to be energy independent, and therefore

Σ′′(ε → 0) ∝ −
ε

|ε|
(7)

that rules out the conjecture A(p, ε) → δ(ε− ǫ(p)).

Nevertheless, the result (7) itself remains unchanged

[8]. Indeed, by virtue of the dispersionless character of

the FC spectrum, this subsystem behaves as a set of

impurities. Therefore in the amplitude of scattering of

normal quasiparticles by the FC, there is a pure elas-

tic term. This circumstance straightforwardly leads to

Eq. (7).

In Fermi gas with impurities, the role of the real part

Σ′ of the mass operator Σ reduces to a slight renor-

malization of the chemical potential µ. Contrariwise, in

Fermi systems with flat bands, Σ′(ε) acquires a loga-

rithmically divergent term

Σ′(ε → 0) ∝ −
ε

|ε|
ln |ε|, (8)

due to violation of particle-hole symmetry, inherent in

these systems (see below). This implies the occurrence

of the gap in the single-particle spectrum, verified by in-

serting Eq. (8) into Eq. (6), a basic result of the analysis

performed in the present article.

Let us now turn to a more detailed analysis of

second-order FC contributions to the imaginary part Σ′′

of the mass operator Σ, coming from diagrams that con-

tain two FC lines. (The total contribution of diagrams

with the single FC line was shown long ago not to pro-

vide the gap in the spectrum ǫ(p) [6, 18]). The second-

order part of Σ′′ is found with the aid of a modified

formula (3) where two functions n(p) are replaced by

n∗(p). There are several options to do that. However,

violation of particle-hole symmetry, discussed above, oc-

curs only in a diagram displayed in Fig. 1 where normal

quasiparticles, depicted by solid lines, convert to the FC

quasiparticles, drawn by dashed ones. This diagram is

reminiscent of that, relevant to inhomogeneous Larkin–

Ovchinnikov–Fulde–Ferrell (LOFF) pairing with certain

total momentum P 6= 0 [19, 20]. However, in the case

under consideration, where LOFF pairing is supposed to

be forbidden by virtue of the repulsive character of the

interaction between quasiparticles in the Cooper chan-

nel, integration over all accessible momenta P is carried
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Fig. 1. The graphical representation for the transfer of two

normal quasiparticles (solid lines) to the FC (dotted lines)

out that provides the restoration of homogeneity of the

ground state. The explicit expression for Σ′′(p /∈ Ω, ε) is

obtained from Eq. (3) with replacements: i) ǫ1 = ǫ2 → 0,

n(p1) → n∗(p1), n(p2) → n∗(p2), ii) δ(ε + ǫ(p3)) →

→ A(p3,−ε), and iii) A(p1 ∈ Ω, ε1) → δ(ε1), A(p2 ∈

∈ Ω, ε2) → δ(ε2) (the latter replacement holds provided

fourth-order FC contributions are neglected).

As a result, we find

|Σ′′(p, ε > 0)| =

∫

C

|Γ2(p,p2,P− p,P− p2)|

(1− n∗(p2))(1− n∗(P− p2))A(P− p,−ε)dPdp2, (9)

while

|Σ′′(p, ε < 0)| =

∫

C

|Γ2(p,p2,P− p,P− p2)|

n∗(p2)n∗(P− p2)A(P − p,−ε)dPdp2. (10)

From aforesaid we infer that the scattering amplitude

Γ, entering this expression, is evaluated at η = 0. The

domain C of integration over momenta p2 and P is de-

termined by conditions

p2 ∈ Ω, P− p2 ∈ Ω. (11)

As seen, the integration over p2 is separated from

that over P, so that upon inserting the explicit form of

the spectral function A we arrive at

|Σ′′(p, ε)| =

∫

K(p, s, ε)|Σ′′(s,−ε)|ds

(e(s, ε) + ǫ0(s))2 + (Σ′′(s,−ε))2
, (12)

where s = P− p and

e(s, ε) = ε+Σ′(s,−ε), (13)

while the normal component ǫ0(p) of the single-particle

spectrum is found from Eq. (2). The function K(ε) is

defined as K(ε > 0) = K+, and K(ε < 0) = K−, with

K+ =

∫

C

|Γ2(p,p2,P)|(1−n∗(p2))(1−n∗(P−p2))dp2,

K− =

∫

C

|Γ2(p,p2,P)|n∗(p2)n∗(P− p2)dp2. (14)

Evidently, both the functions K± change linearly with

the FC density η.

The presence of two different expressions, contain-

ing the FC momentum distribution n∗(p) in these for-

mulas does ensure violation of particle-hole symme-

try, since the FC distribution is not invariant with re-

spect to the replacement n∗(p) → 1 − n∗(p), and then

|Σ′′(p, ε → 0+)| 6= |Σ′′(p, ε → 0−)|. We will employ this

fact in derivation of Eq. (8).

In what follows we focus on 2D electron liquid,

placed in an external field of the quadratic lattice; such

a situation is relevant to cuprates, the most extensively

studied family of high-Tc superconductors. In this case,

the FC domain consists of four small spots [21], adja-

cent to saddle points (0,±π), (±π, 0), associated with

van Hove points (VHPs) where the density of states

diverges (see Fig. 2). The association between the FC

Fig. 2. (Color online) Fermi line (black) and its coun-

terpart (blue) for the bare tight-binding spectrum ǫ0p =

−2 t0 (cos px+cos py)+4 t1 cos px cos py, with t1/t0 = 0.45.

The FC regions [21] are colored in black

spots and VHPs stems from observation that the onset

of fermion condensation is triggered by violation of the

necessary stability condition for the Landau state (for

detail, see, e.g., Ref. [22]), occurring just beyond critical

points where the density of states diverges.

First, let momenta p2 and P−p2 be related to oppo-

site FC spots. Total momentum P is then close to 0 that

resembles the case of Cooper pairing. Boundaries of the

integration region C are found with the aid of Eqs. (11).

In the case where momentum p2 is related, e.g., to the

FC spot, situated near the saddle point (0, π), while

momentum P−p2, to the FC spot, located close to the

opposite saddle point (0,−π), one obtains
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−
Lx

2
≤ (Px − p2x) ≤

Lx

2
,

− π ≤ (Py − p2y) ≤ −π +
Ly

2
,

−
Lx

2
≤ p2x ≤

Lx

2
, π −

Ly

2
≤ p2y ≤ π, (15)

so that

−Lx ≤ Px ≤ Lx, −Ly/2 ≤ Py ≤ Ly/2, (16)

where quantities Lx, Ly ≃ η1/2 determine the FC range.

The implementation of the mean value theorem

(MVT) for integrals, applicable due to positivity of all

functions, standing in the integrand, allows one to recast

Eq. (12) in the form

|Σ′′(p, ε)|=Kav(p, ε)

∫

|Σ′′(s,−ε)|ds

(e(s, ε) + ǫ0(s))2 + (Σ′′(s,−ε))2

(17)

where Kav(p, ε) ∝ η is an averaged value of the func-

tion K(p,P, ε) in the integration region C, controlled

by Eq. (11).

Inequalities (16) imply that the distance between

vectors p and s is small that allows one to replace the

function Σ(s), standing in the denominator of the in-

tegrand (17), by Σ(p). Furthermore, in the region near

the Fermi surface where |ε|, |ǫ0(p)| ≤ vFP ≃ ǫ0
F
η, both

the term Σ′ and ε can be neglected (see below). With

this simplifications, Eq. (12) becomes

|Σ′′(p, ε)| = Kav(p, ε)

∫

|Σ′′(p,−ε)|ds

ǫ20(s) + (Σ′′(p,−ε))2
. (18)

The two-dimensional integration in this equation,

whose limits are specified by Eq. (16), is performed with

the aid of formula ds = dndt = dǫ0dt/|v0|, where n and

t are normal and transversal components of the vector

s, while v0(s) = ∇ǫ0(s) where s ≃ p /∈ Ω. The repeated

application of the MVT then yields

Σ′′(p, ε > 0) = −πlζ(p)K+
av(p),

Σ′′(p, ε < 0) = πlζ(p)K−
av(p), (19)

where l ≃ L ∝ η1/2 is the length of the interval of

integration over t, and ζ(p), an averaged value of the

function 1/v0(s).

Evidently, the result obtained is in agreement with

Eq. (7), discussed above, justifying that in systems with

flat bands, the absolute value of the imaginary part of

the mass operator of a normal quasiparticle experiences

a discontinuity at the Fermi surface. Its magnitude, be-

ing of order η3/2, consists of the factor η, coming from

integration over p2, and an additional factor η1/2 as-

sociated with the limits of integration over t. Similar

results are obtained in case the FC momenta belong to

the same FC spot, since then total momenta P turn out

to be close to 2π/a, and integration is performed over a

small region of momenta P′ = 2π/a − P. At the same

time, contributions from neighbor FC spots are verified

to be suppressed.

Having at hand these results, the real part Σ′ of the

mass operator is then found on the base of the Kramers–

Kronig dispersion relation

Σ′(ε) =
1

π
P

∞
∫

−∞

Σ′′(ε′)sign(ε′)

ε′ − ε
dε′. (20)

In conventional Fermi liquids the particle-hole symme-

try holds, implying that Σ′′(ε → 0+) = −Σ′′(ε →

→ 0−), and therefore the integral (20) identically van-

ishes. True, at large distances from the Fermi surface,

this symmetry is somehow violated. However, this viola-

tion leads only to a renormalization of the chemical po-

tential µ. Contrariwise, according to Eqs. (14) and (19),

in systems with flat bands, violation of the particle-

hole symmetry occurs just at the Fermi surface. This

makes the difference. Indeed, upon inserting Eq. (19)

into Eq. (20) and simple manipulations we are led to

Σ′(p, ε → 0+) = −λη3/2ζ(p) ln |ε|,

Σ′(p, ε → 0−) = λη3/2ζ(p) ln |ε|. (21)

In writing Eq. (21) all numerical factors, independent

of η, are absorbed into the effective coupling constant

λ ∝ K−
av(p) − K+

av(p), whose sign is supposed to be

positive to avoid contradictions with the requirement

∂Σ′(ε)/∂ε < 0.

With the results obtained, approximations made

above are easily verified. Indeed, according to Eq. (21),

one has Σ′(s) ∝ η3/2. At the same time, |ǫ0(s)| ≃

≃ PvF ∝ η, so that the contribution from Σ′ to Eq. (18)

can be freely neglected. The same is valid for the term

ε, as long as |ε| < PvF .

Upon inserting Eq. (21) into Eq. (6) where ε is re-

placed by the true single-particle energy, denoted fur-

ther by E, we are led to

E(p) + λη3/2ζ(p) lnE(p) = ǫ0(p), E > 0,

E(p)− λη3/2ζ(p) ln |E(p)| = ǫ0(p), E < 0. (22)

Upon setting ǫ0(p) = 0, two nontrivial solutions of

Eq. (22) are found:

E(p) ≃ ±λη3/2ζ(p) ln (1/η) . (23)

We emphasize that the occurrence of the gap (23) in the

single-particle spectrum is entailed by the divergence
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(21) of the real part of the mass operator, (cf. situa-

tion in BCS theory where gap solutions E(p) = ±∆(p)

owe their existence to the pole singularity of the Cooper

mass operator Σ′(p, ε) = ∆2/(ε+ ǫ0(p))). Since the gap

(23) emerges in the normal state, it can be viewed as

a unconventional Mott’s gap in the spectrum of single-

particle excitations of systems possessing flat bands.

Noteworthy, in deriving these results we applied the

same perturbation-theory strategy as J. Kondo in his

seminal work on the problem of electron scattering by

magnetic impurities in metals. Curiously, his result also

contains the logarithmic term ln |ε|, however, in con-

trast to Eq. (21), the Kondo correction enters the imagi-

nary part of the electron mass operator, rather than the

real one. Summation of higher orders of the Belyaev-

like expansion employed here is beyond the scope of the

present article. Nevertheless, we hope that similarly to

the situation with the Kondo effect, such a summation

reduces only to the renormalization of input parameters.

The gap (23) has the specific angular dependence

associated with the factor ζ(n), (n = p/p). Outside

the FC regions, this quantity differs little from 1/v0(n).

Therefore by virtue of vanishing of v0(p ∈ Ω) due to

the dispersionless character of the FC spectrum, the

gap magnitude rapidly grows toward the saddle points

(0,±π), (±π, 0) that results in a specific Fermi arc struc-

ture (FAS) of the angle-resolved photoemission spec-

trum, breaking up of the Fermi surface into discon-

nected segments. Usually this structure exhibits itself

in the ARPES data on high-Tc superconductors where

it is conventionally attributed to the occurrence of pre-

formed pairs [23]. However, recently the FAS was uncov-

ered in measurements of photoemission spectra of a 2D

metal Sr2IrO4 that shows no superconductivity down to

low T ; nevertheless, the FAS persists up to 100 K [24–26]

that rules out the conventional scenario [23].

It is instructive to address the situation where the

Mott’s gap is sufficiently large to provide profound sup-

pression of the conductivity σ(T ) ∝ e−D/T . In this case,

the electron system with the flat band behaves as a

strongly correlated system of neutral fermions, with the

magnetic moment µB ∝ e/me. Its thermodynamic prop-

erties, associated with the flat band, remain the same

as in the situation without the Mott’s gap.

Calculations, carried out above, can also be per-

formed in the case of homogeneous matter to yield

E(p) ≃ ±λη
ln (1/η)

vF

. (24)

With respect to Eq. (23), the corresponding value of the

Mott’s gap is somewhat enhanced by virtue of different

kinematic restrictions in comparison to Eq. (16). The

presence of the significant Mott’s gap may affect prop-

erties of dense quark matter where the FC presumably

resides [14]. In the scenario, discussed in the present ar-

ticle, opening the Mott’s gap results in the profound

suppression of neutrino cooling of hybrid compact stars

with a sharp hadron-quark interface. In connection with

this idea, it is not improbable that this suppression is

relevant to recent observations of a central compact ob-

ject in the supernova remnant HESSJ1731-347, being

the hottest isolated neutron star, in spite of its venera-

ble age [27, 28].
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