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Radiationless relaxation in hybrid systems quantum dot (QD) – plasmonic nanostructure is considered.

For the system QD – 2D plasma the relaxation rate extremely steeply depends on the radius of quantum dot

while in the pair QD – cylindrical wire contacting each other this dependence is logarithmic weak.
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Various forms of interaction between quantum dots

(QD) and other nanostructures of different dimensions

are widely discussed in the current literature. Hybrid

quantum well-dots nanostructures have been consid-

ered in [1] as possible candidates for light-emitting and

photo-voltaic applications. A combination of inorganic

InP/ZnS core-shell quantum dots and wide bandgap

ZnO nanowires which can potentially enable optoelec-

tronic devices novel functionalities was the subject of

the paper [2]. Interaction of a semiconductor (QD) with

localized surface plasmons in metallic nanoparticles con-

tains rich and interesting physics and promises numer-

ous applications, e.g., as an all-optical ultrafast switch-

ing device [3, 4].

A very important characteristics of any hybrid sys-

tem QD – plasmonic nanostructure is the rate of energy

transfer between the components of the hybrid. In other

words, this is the rate of radiationless relaxation of the

QD electronic excitation via generation of plasmons in

the neighboring nanostructure. This is the subject of the

present letter. Two hybrid systems are considered: QD

– 2D electron gas (quantum well) and QD – nanowire

(quasi 1D electron gas). The main result is quite dif-

ferent (in these two cases) and surprisingly nontrivial

dependence of the relaxation rate on the QD radius.

2D electron gas. First of all one has to determine

the typical order of magnitude of the QD excitation

energy that is converted into plasma excitation. Sup-

pose we have a QD with the radius a ∼ 10 nm and

the electron effective mass mD of the order of 0.1m0

(m0 – the bare electron mass). For the simplest model

of QD – spherical potential well with hard walls – the
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resonant transition (i.e., allowed in the dipole approx-

imation optical transition) connects the levels 1s and

1p. The frequency of this transition Ω scales as ~/mDa
2

and for above given values it is about 1013 s−1. For

the 2D electron gas we take same order of magnitude

of the effective mass and typical areal density of elec-

trons ∼ 1011 − 1012 cm−2. Then the plasmon with the

frequency ω(k) ∼ 1013 s−1 belongs to that part of the

dispersion curve of the 2D plasma waves where retar-

dation effects become already negligible (plasmon wave

number k is too large) but effects of the spatial disper-

sion are not yet essential (k is still too small) and ω(k)

can be taken in the form ω(k) =
√
kvF/

√
a∗, where vF

is the Fermi velocity of the 2D electron gas, a∗ is ef-

fective Bohr radius. To describe the interaction of the

electron in QD with the plasmons in 2D gas one has to

find the electric field created by 2D plasmon inside the

QD. This can be done from the Poisson equation (not

Maxwell ones because the retardation is neglected!) for

the electrostatic potential ϕ of the 2D plasma wave:

∆ϕ = −4πeÑs(ρ)δ(z); Ñs = −Nsdivu(ρ). (1)

Here u(ρ) is the displacement vector of the particles,

ρ is the 2D vector in the plane z = 0 where plasma is

located. We expand all quantities in Fourier series and

introduce in standard fashion the normal coordinates:

u(ρ) =
∑
k

Qke
ikρ+ c.c. Then the Fourier component of

the potential is

ϕk = −2πieNs exp(−k|z|)(kQk)/k. (2)

The Hamiltonian of the free 2D plasmon field is (see [5]

where this is given for 3D plasmons):

Ĥ =
1

2

∑

k

[
PkP−k

mNs
+mNsω

2(k)QkQ−k

]
, (3)
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where ω2 = 2πe2Nsk/m, m is the electron mass of 2D

gas, and P is the momentum operator. The interaction

of the electrons with the plasmons is described by the

operator

V̂int = −2πie2Ns

∑

k

Q̂ke
ikρ−k|z| + c.c. (4)

After this the probability per unit time of the conver-

sion of electron excitation in QD into a plasmon is given

by the Fermi golden rule:

W =
2π

~2

∑

k

∣∣∣
〈
1|V̂int|0

〉∣∣∣
2

δ(ω(k)− Ω). (5)

Elementary calculation results in the following relax-

ation rate:

1

τ
= M

mΩ2

~Ns
exp

(
−a∗HΩ2

v2F

)
. (6)

Here H is the distance between 2D gas and the center of

QD, ~Ω is the energy separation between the levels 1p

and 1s in QD, M = |〈1p|eikρ−k|z||1s〉|2 – matrix element

squared of the transition 1p− 1s.

Though this result formally is obtained in the frame

of perturbation theory (weak interaction V̂int) it coin-

cides, as it is well known (see, e.g., [6]) with the result

of the Weisskopf–Wigner theory of spontaneous emis-

sion. The latter is based on a different approximation,

the so-called rotating wave approach, that does not de-

mand the weakness of interaction but exploits the reso-

nance approximation: one neglects fast oscillating terms

in the amplitude of states and keeps only slowly varying

ones that actually corresponds to the energy conserva-

tion law. In the Weisskopf–Wigner theory the proba-

bility to find the QD in the initial (excited) state at

the moment t equals exp(−t/τ) with τ defined by the

Eq. (6).

As Ω is proportional to 1/a2 the dependence of the

relaxation rate on QD radius is given by the relation

1

τ
∼ 1

Nsa4
exp

(
−HL3

a4

)
, (7)

where L3 = γ/2π(m/mD)
2a∗/Ns, γ is determined from

the formula Ω = γ~/mDa
2 (for 1s−1p transition γ ≈ 5).

The quantity M also depends on a while it is function

of the parameter k0a with k0 = a∗Ω2/v2F (the root of

the equation ω(k0) = Ω). For the above mentioned val-

ues of Ns ∼ 1011 − 1012 cm−2 we have k0a ∼ 1 and,

correspondingly M ∼ 1. Then for Ns = 1012 cm−2,

H = 20 nm the Eq. (6) gives 1/τ ∼ 1011s−1. However,

for a very high density of 2D electrons (Ns > 1013 cm−2)

the parameter k0a becomes small and this gives estimate

M ∼ (k0a)
2. Then 1/τ extremely steeply depends on

a: 1/τ ∼ a−10 exp(−HL3/a4). Anyway, it is interesting

that relaxation rate always has maximum as a function

of QD radius at amax ∼ (HL3)1/4.

Quantum wire (plasma cylinder). The subject

of consideration is now mobile electrons in a cylinder

of the radius R stretched along z-axis and QD (radius

a) contacting with the cylinder at the point x = R,

y = z = 0. Such a geometry – contact of a spheri-

cal QD and a cylindrical wire – is the most typical for

experiments though, in principle, an arbitrary spatial

separation between the two objects is possible. Then

one more free parameter (similar to the value H of the

previous paragraph) would appear in the problem. The

eigenmodes of the plasma cylinder in the quasistatic ap-

proximation (infinitely large speed of light) are given by

ω2
n(k) = ω2

p

I ′n(kR)Kn(kR)

ε1I ′n(kR)Kn(kR)− ε2K ′
n(kR)In(kR)

, (8)

where ωp is the bulk plasma frequency of the material

which the cylinder is made of, ε1 is the background di-

electric constant of the cylinder, ε2 is the same for the

outer space, k is the longitudinal (along the z-direction)

plasmon momentum, n is the plasmon azimuth quan-

tum number n = 0,±1,±2, ..., I and K are the modi-

fied Bessel functions of the third type and prime means

derivative.

To be precise I consider a metallic wire with ωp

about 3 orders of magnitude larger than Ω. Then the

ratio ωpR/c (c is the speed of light) becomes equal to

or larger than unit for R ≥ 30 nm. Hence, for such wire

radii the quasistatic approach becomes inapplicable and

retardation effects have to be accounted for. Formally

this can be done by substitution k →
√
k2 − ω2/c2 in

the Eq. (8). As ωp ≫ Ω only the long wavelength plas-

mons with n = 0 and kR ≪ 1 can be excited by QD.

Their dispersion relation with logarithmic accuracy has

the form

ω2
0(k) =

ω2
p(kR)2Λ

1 + ω2
pR

2Λ/c2
, (9)

where Λ = ln 2/kR (for the sake of simplicity I put

ε1 = ε2, after that the denominator in the Eq. (8) gives

the Wronskian of I and K equaled to 1/kR). All the rest

plasmon branches with n 6= 0 look like optical phonons –

they have ω ∼ ωp ≫ Ω for all values of k and cannot be

in resonance with the electron transition in QD.

Our next step is quantization of the plasma waves

in the cylinder. One has to consider longitudinal vibra-

tions with the displacement vector uϕ = uρ = 0, uz 6= 0

which effectively interact with electrons. Expansion

uz(ρ, ϕ, z) =
∑

n,k

Qk,nIn(kρ)e
inϕ+ikz (10)
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is to be put in the Maxwell equation for the electric

potential ϕin inside the cylinder

d2ϕin
nk

dρ2
+

1

ρ

dϕin
nk

dρ
−
(
κ2 +

n2

ρ2

)
ϕin
nk =

= Qkn(4πiekNv)In(κρ), (11)

where κ2 = k2 − ω2/c2 > 0, ϕin
nk is the Fourier compo-

nent of the potential, Nv is the bulk density of electrons.

The solution of the inhomogeneous equation (11) is

looked for in the form ϕin
nk = c(ρ)In(κρ) by the method

of variation of constants. The result reads

ϕin
nk(ρ) = 4πiekNvIn(κρ)

ρ∫

0

dρ′

ρ′I2n(κρ
′)

×

×
ρ′∫

0

I2n(κρ
′′)ρ′′dρ′′Qkn. (12)

For n = 0, κ̺ ≪ 1 this gives ϕin
0k = iπekNvρ

2Qk0. This

solution for ϕin has to be matched with the solution in

outer space ϕext = BK0(κρ) at ρ = R. The operator

of the electron-plasmon interaction V̂int is eϕext(ρ)eikz

where ρ =
√
(R + a+ x)2 + y2. Here x and y are the co-

ordinates in the equatorial plane of QD z = 0 counted

from the QD center. Usually one can suppose a ≪ R,

then x, y, z ∼ a and the leading term in the matrix ele-

ment of V̂int takes the form (one can put eikz = 1):

〈V̂int〉 = iπekNv〈Q̂k0〉〈x〉1s,1p
K ′

0(kR)

K0(kR)
. (13)

Moreover, for the cylinder radius much larger than

30 nm, ωpR ≫ c and the plasmon dispersion relation

becomes linear: ω = ck. After integration over k, re-

membering that kR ≪ 1 one obtains:

τ ∼ ln2(~/ma2ωp). (14)

We see now a much slower dependence of the relaxation

rate 1/τ on the QD radius compared with the system

QD – 2D plasma. It is worth to stress that exponential

dependence in the Eq. (6) is not an asymptotical behav-

ior for large distance H but it is the exact result and the

exponent a∗HΩ2/v2F can be of any magnitude. In the

case of plasma cylinder the similar exponential behavior

appears in the limiting case kR ≫ 1 (see Eq. (13)) while

here the opposite limit is considered when McDonald

function Ko has the logarithmic asymptotics. With the

logarithmic accuracy the dependence (14) holds also for

a wire of essentially smaller radius when the quasistatic

limit ωpR ≪ c is achieved. Indeed, the dispersion law of

the quasistatic 1D plasmon very weakly differs from the

linear one: ω ∼ k
√
ln 2/kR while in the opposite limit

ω = ck. But just linear law ω(k) leads to the relation

(14). Such a drastic difference between the cases of 2D

gas (quantum well) and 1D electron system (quantum

wire) stems from the different dispersion laws of plas-

mons in these structures and different dimension of the

phase space of the excited plasmons (2D and 1D).

In conclusion, the rate of radiationless relaxation of

QD excitation in hybrid structures QD – quantum well

and QD – quantum wire is found as a function of the

QD radius.
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