On the hyperfine structures of the ground state(s) in the ⁶Li and ⁷Li atoms

 $A. M. Frolov^{1)}$

Department of Applied Mathematics, University of Western Ontario, N6H 5B7 Ontario, London, Canada

Submitted 29 April 2016 Resubmitted 17 May 2016

DOI: 10.7868/S0370274X16120018

Hyperfine structure of the ground 2^2S -states of the three-electron atoms and ions is investigated. By using our recent numerical values for the doublet electron density at the atomic nucleus we determine the hyperfine structure of the ground (doublet) 2^2S -state(s) in the ⁶Li and ⁷Li atoms. Our predicted values (228.2058 and 803.5581 MHz, respectively) agree well with the experimental values 228.20528(8) MHz (⁶Li) and 803.50404(48) MHz (⁷Li (R. G. Schlecht and D. W. McColm, Phys. Rev. **142**, 11 (1966))). The hyperfine structures of a number of lithium isotopes with short life-times, including ⁸Li, ⁹Li, and ¹¹Li atoms are also predicted. The same method is used to obtain the hyperfine structures of the three-electron ⁷Be⁺ and ⁹Be⁺ ions in their ground 2^2S -states. Finally, we conclude that our approach can be generalized to describe the hyperfine structure in the triplet n^3S -states of the four-electron atoms and ions.

Table 1. Predicted and observed hyperfine structures and hyperfine structure splittings in the ground ${}^{2}S$ -state(s) in the ${}^{6}Li$ and ${}^{7}Li$ atoms and ${}^{9}Be^{+}$ ion (in MHz). Experimental data have been taken from: R. G. Schlecht and D. W. McColm, Phys. Rev. 142, 11 (1966)

⁶ Li	f_N	I_N	$E_{hf}(1)$	$E_{hf}(2)$	ΔE_{hf} (predicted)	ΔE_{hf} (experiment)
⁶ Li	0.8220473	1+	$-76.0684 \ (F = \frac{3}{2})$	152.1372 $(F = \frac{1}{2})$	228.2058	228.20528(8)
$^{7}\mathrm{Li}$	3.2564268	$\left(\frac{3}{2}\right)^{-}$	$-502.2238 \ (F=1)$	301.3343~(F=2)	803.5581	803.50404(48)
⁸ Li	1.653560	2^{+}	$-306.0252 \ (F = \frac{5}{2})$	229.5189 $(F = \frac{3}{2})$	535.5441	
⁹ Li	3.43678	$\left(\frac{3}{2}\right)^{-}$	$-530.0388 \ (F = 1)$	318.0233~(F=2)	848.0621	
11 Li	1.653560	$\left(\frac{3}{2}\right)^{-}$	$-566.1925 \ (F=1)$	$339.7154 \ (F=2)$	905.9078	
$^{7}\mathrm{Be^{+}}$	-1.39928	$\left(\frac{3}{2}\right)^{-}$	$-927.1002 \ (F=1)$	$556.2601 \; (F=2)$	1483.3603	
$^{9}\mathrm{Be^{+}}$	-1.177432	$\left(\frac{3}{2}\right)^{-}$	$-780.1136 \ (F=1)$	$468.0681 \; (F=2)$	1248.1818	

Full text of the paper is published in JETF Letters, v. 103-12. DOI: 10.1134/S0021364016120018

¹⁾e-mail: afrolov@uwo.ca