Абляция поверхности алюминия и кремния ультракороткими лазерными импульсами варьируемой длительности

Д. А. Заярный⁺, А. А. Ионин⁺, С. И. Кудряшов^{+*×1)}, С. В. Макаров^{+ ∇}, А. А. Кучмижак[×]°, О. Б. Витрик[×]°, Ю. Н. Кульчин[×]

+Физический институт им. Лебедева РАН, 119991 Москва, Россия

*Национальный исследовательский ядерный университет МИФИ, 115409 Москва, Россия

 $^{\times}$ Институт автоматики и систем управления ДВО РАН, 690041 Владивосток, Россия

^оДальневосточный федеральный университет, 690041 Владивосток, Россия

⊽Университет ИТМО, 197101 С.-Петербург, Россия

Поступила в редакцию 12 мая 2016 г. После переработки 18 мая 2016 г.

Пороги одноимпульсной абляции поверхности алюминия и кремния ультракороткими лазерными импульсами ИК и видимого диапазона по откольному механизму измерены методом оптической микроскопии для длительности импульсов τ_{las} в диапазоне 0.2–12 пс. По мере увеличения длительности лазерных импульсов для $\tau_{las} < 3$ пс обнаружено резкое, почти трехкратное снижение порога абляции алюминия в видимом диапазоне при очень слабом изменении порога абляции материала ИК-излучением. Напротив, для кремния с ростом длительности импульсов отмечается практически трехкратный *рост* порога ИКлазерной абляции, тогда как порог абляции видимым излучением остается практически неизменным. Для алюминия снижение порогов абляции связывается с резким уменьшением температурных градиентов для длительностей импульсов, превышающих характерное время электрон-фононной релаксации. Для кремния рост порога ИК-абляции объясняется двухфотонным поглощением, тогда как в видимом диапазоне постоянство порога связано с линейным поглощением материала.

DOI: 10.7868/S0370274X16120031

1. Фундаментальные механизмы, а также пороговые значения плотности энергии F_{th} для абляции поверхности материалов ультракороткими суб- и пикосекундными – лазерными импульсами (УКИ) существенно зависит от длительности УКИ $\tau_{\rm las}$ [1–7], что позволяет исследовать физику процесса абляции, варьируя длительность УКИ. Для случая диэлектрических материалов было показано, что $F_{\rm th}$ монотонно растет с увеличением $\tau_{\rm las}$ $(\propto \tau_{\rm las}^{1/2})$ в суб- и наносекундном диапазоне, отражая процесс теплопроводности для квазиравновесного состояния электронной и решеточной подсистем (характерные времена электрон-фононной релаксации $\tau_{\rm ep} \sim 10\,{\rm nc}$) [1]. Однако, изменения $F_{\rm th}$ в области (суб)пикосекундных значений $\tau_{\rm las} < \tau_{\rm ep}$ оказались довольно неоднозначными - имеют место восходящие [1-3,7], постоянные [4] или даже немонотонные (с минимумом) зависимости $F_{\rm th}(\tau_{\rm las})$ [5,6]. Действительно, для $\tau_{\rm las} < \tau_{\rm ep}$ в течение УКИ температура неравновесных носителей Т_е на электронно-

возбужденной поверхности материала может значительно превышать температуру решетки $T_{\rm i}$ ($T_{\rm e} \gg T_{\rm i}$) ввиду многократно меньшей теплоемкости электронной подсистемы по сравнению с теплоемкостью ионной подсистемы – $C_{\rm e} \ll C_{\rm i}$ [8], что вызывает как усиленную (фото) термоэмиссию носителей, так и более интенсивный теплоперенос для более резких пространственных градиентов Те (коэффициент теплопроводности к_е также существенно изменяется с ростом T_e [9]). Это может приводить к увеличению диссипативных потерь при абляции более короткими УКИ. Напротив, для материалов с нелинейным фотовозбуждением увеличение длительности УКИ резко уменьшает скорость возбуждения, нелинейно зависящую от интенсивности УКИ, что должно приводить к росту $F_{\rm th}$ по мере увеличения $\tau_{\rm las}$ в конкуренции с вышеописанным процессом теплопроводности. Вместе с тем такие исследования, проясняющие различные стороны электронной и решеточной динамики фотовозбужденных материалов, а также перспективы их технологической лазерной обработ-

Письма в ЖЭТФ том 103 вып. 11–12 2016

¹⁾e-mail: sikudr@lebedev.ru

ки фемто- и пикосекундными лазерными импульсами, до сих пор не проводились.

В настоящей работе сообщается о наблюдении противоположных, спектрально-зависимых тенденций в изменении порога одноимпульсной абляции алюминия и кремния по откольному механизму под действием УКИ с длительностью, варьируемой в диапазоне 0.2–12 пс. Анализ экспериментальных данных указывает на определяющую роль электрон-фононной релаксации и транспорта носителей для металла, тогда как для полупроводника характер зависимости определяется нелинейным ИК-фотовозбуждением.

2. В данных исследованиях лазерное облучение свежих участков поверхности оптического качества мишеней алюминия и нелегированного кремния (пластина ориентации [100]), расположенных на трехкоординатной моторизованной трасляционной платформе с компьютерным управлением, осуществлялось на экспериментальном стенде для нано/микроструктурирования [10] одиночными импульсами волоконного лазера с активной средой на ионах иттербия: длина волны основной гармоники $(\Pi\Gamma) - 1030$ нм (с удвоением частоты – 515 нм, ВГ), ширина спектра на полувысоте – 9 (1.7) нм, частота следования импульсов – 0-2 МГц. Длительность УКИ ПГ (на полувысоте) τ_{las} варьировалась с помощью выходного компрессора в интервале 0.3–12 пс (для ВГ – 0.2–8 пс) и измерялась с помощью сканирующего интерференционного автокоррелятора АА-20DD (Авеста проект, диапазон – 10–30000 фс) (рис. 1), показывая монотонно спадающие плечи

Рис. 1. (Цветной онлайн) Экспериментальные интерференционные автокорреляционные сигналы для ИК УКИ с варьируемой полушириной τ_{las}

как для коротких (суб-пикосекундных), так и более длинных – пикосекундных лазерных импульсов

(некоторая ступенчатость автокорреляционных временных профилей проявлялась только в переходном режиме для $\tau_{\text{las}} = 2 - 6 \,\text{nc}$). Энергия *E* для УКИ ПГ в ТЕМ₀₀-моде плавно изменялась с помощью встроенного выходного акусто-оптического модулятора в интервале 0.1–10 мкДж (для УКИ ВГ – тонкопленочного отражательного ослабителя). Лазерное излучение ВГ и ПГ через тринокулярное входное окно микроскопа Levenhook BioView630 и последующее делительное зеркало с пропусканием 50% слабо фокусировалось на поверхность образца в воздухе через объектив с числовой апертурой NA = 0.25 в пятно радиусом $R_{1/e} \sim 3$ (ВГ) и 11 (ПГ) мкм, соответственно. Визуализация топографии рельефа облученной поверхности и измерения радиусов абляционных кратеров R в зависимости от Eдля различных длительностей УКИ $\tau_{\rm las}$ в интервале 0.2-12 пс проводились в отраженном свете при помощи металлографического оптического микроскопа Альтами-6.

3. Полученные для мишени алюминия зависимости $R^2 - \ln E$ для τ_{las} в интервале 0.2–12 пс показывают монотонное уменьшение как пороговой энергии $E_{\rm abl}$, так и характерного 1/e-радиуса области абляции w_{abl} (рис. 2, вставки). Пороговые энергии более сильно – почти в 5 раз – убывают с ростом τ_{las} для более слабо поглощающегося видимого излучения [11], тогда как для сильно поглощающегося ИКизлучения [11] уменьшаются не более, чем на 10%. Уменьшение $E_{\rm abl}$ с ростом $\tau_{\rm las}$ можно связать с более медленным вводом энергии УКИ в материал, что становится очень существенным в случае $\tau_{\rm las} > \tau_{\rm ep}$, поскольку в этом случае теплоперенос направляется небольшими градиентами $T_{\rm e} \approx T_{\rm i}$. Действительно, с ростом $au_{\rm las} > au_{
m ep}$ размер $w_{
m abl}$ по этой же причине заметно убывает для УКИ видимого излучения (рис. 2), но довольно слабо для ИК-излучения. Рассчитанные с использованием $E_{\rm abl}$ и $w_{\rm abl}$ пороговые плотности вложенной (без учета отражения) энергии $F_{\rm th} = E_{\rm abl}/(\pi w_{\rm abl}^2)$ неплохо согласуются с известными значениями порога откольной абляции алюминия – $\approx 0.5 \, \text{Дж/см}^2$ (744 нм, 110 фс) [12] и довольно значительно - почти в три раза - уменьшаются с увеличением т_{las} для УКИ видимого излучения, тогда как довольно слабо – практически в пределах экспериментальной ошибки – для ИК-излучения $(0.8-0.95 \, \text{Дж/см}^2)$. Соответственно, для обоих спектральных диапазонов наблюдаемое начальное быстрое снижение порогов откольной абляции поверхности алюминия с ростом $\tau_{\rm las}$ примерно до 3 пс можно связать с достижением времени термализации поглощенной энергии в конденсированной фазе $\tau_{\rm T}$

Рис. 2. (Цветной онлайн) Зависимости порога откольной абляции алюминия $F_{\rm th}$ от длительности УКИ $\tau_{\rm las}$ для видимого (515 нм, зеленые кружки) и ИК (1030 нм, красные кружки) излучения. Вставки: сверху – зависимости от $\tau_{\rm las}$ для пороговой энергии $E_{\rm abl}$ и 1/e-радиуса абляции $w_{\rm abl}$ с радиусами фокусировки $R_{1/e}$, показанными цветными горизонтальными пунктирными линиями, внизу – оптический микроснимок кратера на поверхности алюминия при ее абляции УКИ видимого диапазона и его диаметр, показанный белой стрелкой. На всех рисунках вертикальная пунктирная стрелка показывает оценку $\tau_{\rm T}$

 $(T_{\rm e} \approx T_{\rm i})$, что резко уменьшает теплоперенос и его влияние на энергетику абляции, а последующее слабое изменение или насыщение – с выглаживанием температурных градиентов из-за спада $T_{\rm e}$ при быстрой электрон-фононной релаксации уже в масштабе УКИ ($\tau_{\rm las} \gg \tau_{\rm T}$). Время термализации $\tau_{\rm T}$ составляет, как минимум, $(2-3)\tau_{\rm ep}$ или $\sim 5\tau_{\rm e}$, где характерное время релаксации энергии электронной подсистемы $\tau_{\rm e} \approx C_{\rm e}/G$ и $\tau_{\rm ep} \approx C_{\rm i}/G > \tau_{\rm e}$ для константы электрон-фононной связи G [8]. С учетом этих оценок $\tau_{\rm ep} \approx 1$ пс и $\tau_{\rm e} \sim 0.1$ пс, что согласуется с оценками [7, 13, 14].

Аналогичные зависимости $R^2 - \ln E$ для разных τ_{las} для мишени кремния показывают для пороговой энергии E_{abl} , напротив, начальное трехкратное (ПГ) или 50%-ое (ВГ) увеличение с последующим насыщением и даже небольшим спадом, а также похожий характер зависимости w_{abl} от τ_{las} , но с гораздо меньшим размахом – практически в пределах экспериментальной ошибки 10–15% (рис. 3, вставки). В результате, рассчитанные значения пороговой плотности вложенной (без учета отражения) энергии F_{th} практически не изменяются с ростом τ_{las} для УКИ видимого излучения, однако, очень значи-

Рис. 3. (Цветной онлайн) Зависимости порога откольной абляции кремния $F_{\rm th}$ от длительности УКИ $\tau_{\rm las}$ для видимого (515 нм, зеленые кружки) и ИК (1030 нм, красные кружки) излучения. Вставки: сверху – зависимости от $\tau_{\rm las}$ для пороговой энергии $E_{\rm abl}$ и 1/е-радиуса абляции $w_{\rm abl}$ с радиусами фокусировки $R_{1/\rm e}$, показанными цветными горизонтальными пунктирными линиями, внизу – оптический микроснимок кратера на поверхности кремния при ее абляции УКИ видимого диапазона и его диаметр, показанный белой стрелкой. На вставке для $E_{\rm abl}$ дана степенная аппроксимация начального участка с показателем 0.50 ± 0.12

тельно – в три раза – возрастают с увеличением $\tau_{\rm las}$ для ИК-излучения (0.3–0.9 Дж/см²). Для субпикосекундных УКИ пороги $F_{\rm th} \approx 0.32 \, {\rm Дж}/{\rm cm}^2 \ (1030 \, {\rm \, hm})$ и 0.95 Дж/см² (515 нм) неплохо согласуются с известным значением порога откольной абляции материала – ≈0.5 Дж/см² (744 нм, 110 фс) [15], при этом существенно более высокий порог абляции для УКИ видимого диапазона можно объяснить более сильным оптическим отражением и поглощением [11], а также более существенными потерями энергии при (суб)пикосекундной амбиполярной диффузии фотовозбужденной электрон-дырочной плазмы из тонкого скин-слоя в объем материала. Напротив, ИКизлучение (1030 нм) слабо поглощается в слабо- или нелегированном кремнии в линейном режиме [11], тогда как в двухфотонном режиме характерная глубина нелинейного поглощения может достигать 140 нм [15-18], что практически предотвращает электронный теплоперенос в объем материала в результате амбиполярной диффузии (характерный масштаб – $(D\tau_{\rm las})^{1/2} \sim 10{-}100\,{\rm нм}$ для $\tau_{\rm las} \sim 0.1{-}10\,{\rm nc}$ и коэффициента диф
фузии $D \sim 10 \, {
m cm}^2/{
m c}$ [19]. В то же время с ростом $\tau_{\rm las}$ при фиксированной плотности энергии УКИ монотонно падает пиковая интенсивность из-

849

лучения $\sim (F/\tau_{\rm las})$ и еще более значительно падает скорость двухфотонного возбуждения $\sim (F/\tau_{\rm las})^2$, а таже вложенная за время объемная плотность энергии ε

$$\varepsilon \propto \left(\frac{F}{\tau_{\rm las}}\right)^2 \tau_{\rm las},$$
 (1)

что для фиксированной порогой величины $\varepsilon_{\rm abl}$ позвляет выразить $F_{\rm th}$ как функцию $\tau_{\rm las}$

$$F_{\rm th} \propto \sqrt{\varepsilon_{\rm abl} \tau_{\rm las}},$$
 (2)

или в общем случае *n*-фотонного поглощения, как очевидно, $F_{\rm th} \propto \tau_{\rm las}^{(n-1)/n}$.

Как отмечалось выше, ранее для диэлектрических материалов и УКИ уже наблюдались сублинейные зависимости порога повреждения поверхности от τ_{las} [1–7], однако, за исключением зависимости $\tau_{\rm las}^{1/2},$ которая связывалась преимущественно с теплопереносом на временах $\tau_{\rm las} > \tau_{\rm ep}$ [1], такие соотношения объяснения пока не получили. В настоящей работе показывается, что такие сублинейные зависимости могут быть связаны с нелинейным поглощением в материале с сильно выраженным межзонным поглощением, однако для детальных исследований – вплоть до определения степени нелинейности фотопроцесса – необходимо контролировать поглощательную способность материала при данных $F_{\rm th}$, которая может существенно зависеть от $\tau_{\rm las}$. В частности, при воздействии УКИ на длине волны 1030 нм на поверхность кремния в абляционном режиме наблюдаемое только для ИК-излучения соотношение $F_{
m th} \propto au_{
m las}^{1/2}$ с последующим насыщением (рис. 3) характеризует, по-видимому, не теплоперенос [1], а двухфотонное поглощение и связанное с ним фотовозбуждение плотной электрон-дырочной плазмы. Такая плазма может вызывать в кремнии существенную безынерционную электронную перенормировку ширины прямой запрещенной зоны [20], составляющей около 3-3.5 эВ [11], что хорошо заметно для зависимости $F_{\rm th}(\tau_{\rm las})$ для УКИ видимого диапазона, демонстрирующих, по-видимому, с учетом перенормировки зонной щели прямое линейное поглощение, несмотря на энергию фотона (около 2.4 эВ), меньшую указанной выше ширины прямой запрещенной зоны.

Наконец, в случае алюминия (рис. 2) эффект электрон-фононной релаксации проявился не в возрастании порога абляции для $\tau_{\text{las}} > \tau_{\text{ep}}$, как предполагалось для диэлектрических материалов в работе [1], а, напротив, в очень значительном спаде порогов для $\tau_{\text{las}} < \tau_{\text{ep}}$ с их последующим насыщением, по-видимому, в связи с выглаживанием температурных градиентов после быстрой электрон-фононной

Письма в ЖЭТФ том 103 вып. 11-12 2016

релаксации. Вместе с тем авторами планируются дальнейшие исследования в области субпикосекундных длительностей УКИ для уточнения характера наблюдаемых размерных соотношений для порогов абляции поверхности металлов, полупроводников и диэлектриков в зависимости от длительности и длины волны УКИ.

4. Таким образом, в результате экспериментальных исследований откольной абляции поверхности алюминия и кремния под действием одиночных лазерных импульсов ИК и видимого диапазона с варьируемой фемто/пикосекундной длительностью обнаружено уменьшение, а не увеличение порогов для металла в результате быстрой электрон-фононной релаксации и выглаживания температурных градиентов после термализации поглощенной энергии, тогда как для полупроводника установлено ожидаемое увеличение порогов с ростом длительности УКИ, но вследствие двухфотонного поглощения ИКизлучения в материале, а не теплопереноса.

Работа поддержана грантом Российского научного фонда (проект #16-12-10165).

- B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. B 53, 1749 (1996).
- M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, Phys. Rev. Lett. 80, 4076 (1998).
- M. Li, S. Menon, J. P. Nibarger, and G. N. Gibson, Phys. Rev. Lett. 82, 2394 (1999).
- M. Mero, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
- D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).
- И.А. Артюков, Д.А. Заярный, А.А. Ионин, С.И. Кудряшов, С.В. Макаров, П.Н. Салтуганов, Письма в ЖЭТФ 99, 54 (2014).
- R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, S. Valette, C. Donnet, E. Audouard, and F. Dausinger, Appl. Surf. Sci. 249, 322 (2005).
- Н. А. Иногамов, Ю. В. Петров, ЖЭТФ 137, 505 (2010).
- Z. Lin, L. V. Zhigilei, and V. Celli, Phys. Rev. B 77, 075133 (2008).
- П.А. Данилов, Д.А. Заярный, А.А. Ионин, С.И. Кудряшов, Ч.Т.Х. Нгуен, А.А. Руденко, И.Н. Сараева, А.А. Кучмижак, О.Б. Витрик, Ю.Н. Кульчин, Письма в ЖЭТФ 103, 617 (2016).
- Handbook of Optical Constants of Solids, ed. by E. D. Palik, Academic Press, Orlando (1998).

- А. А. Ионин, С.И. Кудряшов, А.Е. Лигачев, С.В. Макаров, Л.В. Селезнев, Д.В. Синицын, Письма в ЖЭТФ 94, 289 (2011).
- J. P. Girardeau-Montaut, M. Afif, C. Girardeau-Montaut, S. D. Moustaizis, and N. Papadogiannis, Appl. Phys. A 62, 3 (1996).
- 14. S. Valette, PhD thesis, Saint Etienne, 2003.
- А.А. Ионин, С.И. Кудряшов, Л.В. Селезнев, Д.В. Синицын, А.Ф. Бункин, В.Н. Леднев, С.М. Першин, ЖЭТФ 143, 403 (2013).
- 16. D.H. Reitze, T.R. Zhang, Wm.M. Wood, and

M.C. Downer, J. Opt. Soc. Am. B 7, 84 (1990).

- D. J. Hwang, C. P. Grigoropoulos, and T. Y. Choi, J. Appl. Phys. 99, 083101 (2006).
- S. Lee, D. Yang, and S. Nikumb, Appl. Surf. Sci. 254, 2996 (2008).
- J. F. Young and H. M. van Driel, Phys. Rev. B 26, 2147 (1982).
- P.A. Danilov, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Rudenko, P.N. Saltuganov, L.V. Seleznev, V.I. Yurovskikh, D.A. Zayarny, and T. Apostolova, ЖЭΤΦ 147, 1098 (2015).