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Condensation of Fermion Zero Modes in the Vortex
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The spectrum of the low-energy fermionic bound

states in the core of the symmetric vortex with winding

number m = ±1 in the isotropic model of s-wave super-

conductor was obtained in a microscopic (BCS) theory

by Caroli, de Gennes and Matricon [1]:

En =

(

n+
1

2

)

ω0(pz). (1)

Here pz is the momentum of the bound states along

the vortex line, and n is related to the angular momen-

tum quantum number Lz. This spectrum is two-fold

degenerate due to spin degrees of freedom. The level

spacing – the so called minigap – is small compared to

the energy gap of the quasiparticles outside the core,

ω0 ∼ ∆2/EF ≪ ∆.

For the chiral superfluid/superconductor with an

odd winding number of the phase of the gap function

in momentum space (i.e., ∆(p) ∝ (px + ipy)
N with odd

N), the spectrum of fermions in the symmetric vortex

is modified. For the most symmetric vortex in the Weyl

superfluid 3He-A one has [2, 3]:

En = nω0(pz). (2)

The spectrum contains the zero energy states at n = 0.

In the two-dimensional case the n = 0 levels represent

two Majorana modes [4, 5]. The 2D half-quantum vor-

tex, which is the vortex in one spin component, con-

tains single Majorana mode. In the 3D case the Eq. (2)

at n = 0 describes the flat band [6]: all the states in the

interval −p0 < pz < p0 have zero energy, where p0ẑ and

−p0ẑ mark the positions of two Weyl points in the bulk

material [7].

Here we consider vortices, in which the minigap

ω0(pz) vanishes at pz = 0. Examples are provided by

half-quantum vortices [8] in the recently discovered [9]

non-chiral (N = 0) spin-triplet polar phase of superfluid
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3He, and by vortices in chiral (N = 1) spin-singlet su-

perconductors with (dxz + idyz) pairing [10] (such pair-

ing has been suggested in the heavy-fermion compound

URu2Si2 [11, 12]). For small pz ≪ pF the minigap in

these phases has the following form:

ω0(pz) = ω00
p2z
p2F

ln
p2F
p2z

, ω00 ∼
∆2

0

EF

, (3)

where ω00 has an order of the minigap in the conven-

tional s-wave superconductors. The spectrum is shown

in Fig. 1 for vortex in a polar phase (Fig. 1a) and in

Fig. 1. Illustration of the spectrum of fermion zero modes

at |pz| ≪ pF on vortices in the polar phase of superfluid
3He (a) and in the chiral (dxz+idyz)-wave superconductor

(b). The branches with different n approach zero-energy

level at pz → 0. In addition, the vortex in (dxz+idyz)-wave

superconductor contains the flat band at n = 0 [10]

(dxz + idyz)-wave superconductor, see Fig. 1b. All the

branches with different n touch the zero energy level. It

looks as the flat band in terms of n for pz = 0. In addi-

tion the vortex in chiral superconductor has a flat band

in terms of pz at n = 0. The effect of squeezing of all en-

ergy levels n towards the zero energy at pz → 0 can be

called the condensation of Andreev–Majorana fermions

in the vortex. It leads to the non-analytic behavior of
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the density of states as a function of magnetic field in

superconductor or of rotation velocity in superfluid.

Full text of the paper is published in JETP Letters

journal.
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