Поведение теплоемкости при фазовых переходах второго рода в металл-органическом сорбенте [Zn₂(C₈H₄O_{4)₂} · C₆H₁₂N₂]

 $C. \Gamma. Козлова^{1)}$

Институт неорганической химии им. Николаева СО РАН, 630090 Новосибирск, Россия

Поступила в редакцию 27 июня 2016 г. После переработки 4 июля 2016 г.

В данной работе проведен анализ температурного поведения теплоемкости при фазовых переходах второго рода, обнаруженных ранее в металл-органическом сорбенте [Zn₂(C₈H₄O₄)₂ · C₆H₁₂N₂]. Получены значения критических индексов и показано, что поведение теплоемкости ниже температуры фазового перехода при 60 K, который связывается с нарушением зеркальной симметрии ротосимметричных молекул C₆H₁₂N₂, подчиняется экспоненциальному закону.

DOI: 10.7868/S0370274X16160086

Ранее было высказано предположение, что механизм нарушения зеркальной симметрии в рацематах, при котором менее стабильные правые энантиомеры туннелируют в более стабильные левые энантиомеры, может быть представлен как фазовый переход второго рода, с экспоненциальным поведением теплоемкости ниже критической температуры [1,2]. В настоящее время проводятся исследования данного вопроса. Например, в работе [3] были представлены данные в подтверждение этого предположения на примере изучения фазовых переходов в кристаллах аланина и валина, однако позднее эти данные были подвергнуты критике [4].

Недавно был обнаружен эффект, который интерпретирован как процесс, связанный с потерей зеркальной симметрии ротосимметричных молекул $C_6H_{12}N_2$ (DABCO) в металл-органическом сорбенте [$Zn_2(C_8H_4O_4)_2 \cdot C_6H_{12}N_2$] в области ~ 60 K [5–7].

Непроводящий металл-органический сорбент $[Zn_2(C_8H_4O_4)_2 \cdot C_6H_{12}N_2]$ представлен слоями, состоящими из катионов металла Zn²⁺ и анионовлигандов терефталевой кислоты (C₈H₄O₄)²⁻. Эти слои соединяют молекулы DABCO (рис. 1) [8]. Молекулы DABCO могут существовать в трех изомерных формах, которые характеризуются симметрией D_{3h} (нескрученные) и симметрией D₃, которые могут быть скрученными влево (S) и вправо (R) [7,9]. Теплоемкость $[Zn_2(C_8H_4O_4)_2 \cdot C_6H_{12}N_2]$ характеризуется тремя фазовыми переходами $\sim 130, 60$ и $15 \, \text{K},$ значения которой были получены при постоянном давлении и приведены в [10]. Габуда предложил модель для описания обнаруженных фазовых переходов на основании данных ядерной спин-решеточной релаксации T₁ ¹Н ЯМР при сопоставлении с данными калориметрии [5–7]. При температуре ниже фазового перехода второго рода ~130 K система из трех типов практически неразличимых по энергии молекул DABCO распадается на две подсистемы, одна из которых представлена молекулами DABCO с симметрией D_{3h}, другая представлена энергетически не различимыми молекулами DABCO с симметрией D₃(S) и D₃(R). Фазовый переход второго рода при $\sim 60 \,\mathrm{K}$ был интерпретирован как процесс, связанный с нарушением туннелирования между молекулами DABCO с симметрией D₃(S) и D₃(R) [5,6]. Отметим, что значение этой температуры согласуется с температурными критериями для преобладания туннельных эффектов над барьерными переходами, и является дополнительным аргументом в пользу существования туннельных эффектов в этой области температур для $[Zn_2(C_8H_4O_4)_2 \cdot C_6H_{12}N_2]$ [11]. Фазовый переход первого рода при $\sim 15\,\mathrm{K}$ охарактеризован как распад системы на три неравные части по энергетическим состояниям молекул DABCO с симметриями D_{3h} , $D_3(S)$ и $D_3(R)$.

Для анализа поведения теплоемкости в области фазовых переходов второго рода были использованы значения аномальной части теплоемкости: $\Delta C_P =$ $= C_P - C_P^R$, где C_P – теплоемкость вещества и C_P^R – регулярная часть теплоемкости "в отсутствии фазовых переходов". Для описания C_P^R были использованы табулированные функции теплоемкости твердых тел [12–14] и C_P^R для [Zn₂(C₈H₄O₄)₂ · C₆H₁₂N₂] была представлена теплоемкостью квази невзаимодействующих цепочек, как было сделано в [10]. На рис. 2 показаны полученные значения ΔC_P в единицах, пе-

¹⁾e-mail: sgk@niic.nsc.ru

Рис. 1. (Цветной онлайн) (a) – Структура металл-органического сорбента [Zn₂(C₈H₄O₄)₂ · C₆H₁₂N₂], пр.гр. P4/mmm, a = 10.93 Å, c = 9.61 Å [8]. Схематично показаны переходы из лево-скрученного (S) состояния в право-скрученное состояние (R). (b) – D₃ и D_{3h} – возможная симметрия для молекул DABCO

ресчитанных на грамм-атом. Поскольку фазовые переходы при ~60 и ~130 К являются фазовыми переходами второго рода, то зависимости ΔC_P были представлены в двойном логарифмическом масштабе с целью выявления существования температурных областей, в которых поведение теплоемкости подчиняется закону $\Delta C_P \sim |1 - T/T_c|^{-\alpha}$, где α – критический индекс и T_c – температура фазового перехода [15–17].

Можно видеть, что выше и ниже температур фазовых переходов такие области температур существуют в пределах $10^{-3} < |1 - T/T_c| < 10^{-1}$ (рис. 3). В табл. 1 приведены полученные значения критических индексов α . В фазе выше $\sim 130\,{\rm K}$ значение α является наибольшим. Эта фаза характеризуется динамическим разупорядоченнием молекул DABCO, в которой потенциальные барьеры для реориентационных движений молекул DABCO с разной струк-

$\Delta T, \mathbf{K}$	$129.74 \div 152$	$118 \div 129.74$	$60 \div 66$	$56 \div 60$
α	(0.153 ± 0.003)	(0.044 ± 0.002)	(0.042 ± 0.002)	(0.002 ± 0.002)

Таблица 1. Области температур (ΔT), в которых значения ΔC_P подчиняются закону $\sim |1 - T/T_c|^{-\alpha}$, и критические индексы α

Рис. 2. Температурная зависимость ΔC_P лля $[Zn_2(C_8H_4O_4)_2 \cdot C_6H_{12}N_2]$

турной симметрией D_{3h} , $D_3(S)$ и $D_3(R)$ практически одинаковы [5]. В области между $\sim\!130$ и $\sim\!60\,{\rm K}$ потенциальные барьеры для молекул с симметрией D_{3h} и D_3 становятся различными [5–7]. Интересно, что значения α практически одинаковы ниже $\sim 130 \,\mathrm{K}$ и выше $\sim 60 \,\mathrm{K}$. В области температур ниже $\sim 60 \,\mathrm{K}$ значение $\alpha \approx 0$. В целом, значения полученных α находятся в согласии с известными значениями индексов поведения теплоемкости в критических областях, в частности, с теоретическими индексами модели Изинга в трехмерном случае [18]. Особый интерес вызывает область ниже $\sim 60 \,\mathrm{K}$, где $\alpha \approx 0$, поскольку в этой области, согласно [5,6], при понижении температуры предполагается нарушение процесса туннелирования между $D_3(S)$ и $D_3(R)$ формами молекул DABCO. Учитывая гипотезу [1,2], в работе была проведена проверка соответствия теплоемкости ΔC_P с экспоненциальной зависимостью $\sim \exp(-\Delta/T)$, где $\Delta = 1.76 T_{\rm c}$ – энергетическая щель в "сверхпроводящей" системе по теории БКШ (в нашем случае этот термин является условным). На рис. 4 представлена ΔC_P как функция 1/Т в области 15 < T < 60 К. Видно, что имеется хорошее совпадение с экспоненциальным законом, при параметре $\Delta = 55.7 \cdot 0.1 \, \mathrm{K}$. Полученное значение Δ оказалось практически в два раза меньше ожидаемого из теории БКШ ~ 106 К. Можно полагать, что существует некоторая неточность, связанная с параметрами, определяющими функцию C^R_P, которая может вносить ошибку в значение Δ . Однако наиболее важ-

Рис. 3. (Цветной онлайн) Зависимость ΔC_P от |1 -T/T в двойном логарифмическом масштабе для [Zn₂(C₈H₄O₄)₂·C₆H₁₂N₂]: (a) – в области температуры фазового перехода при $T_c = 129.74 \,\mathrm{K}$ выше и ниже T_c . (b) – в области температуры фазового перехода при $T_c = 60 \,\mathrm{K}$ выше и ниже T_c

ным результатом является обнаружение экспоненциального поведения теплоемкости.

Таким образом, впервые проведен анализ поведения теплоемкости в области фазовых переходов второго рода в металл-органическом сорбенте $[Zn_2(C_8H_4O_4)_2 \cdot C_6H_{12}N_2]$. Обнаружено, что фазовые переходы выше и ниже температур фазовых переходов подчиняются закону $|1 - T/T_c|^{-\alpha}$. В области ниже температуры ~ 60 K теплоемкость соответствует экспоненциальному закону. Если фазовый переход при ~ 60 К действительно обусловлен процессом нарушения туннелирования между $D_3(S)$ и $D_3(R)$ формами молекул DABCO [5,6], то полученные результаты могут иметь важное значение для дальнейшего

Рис. 4. Зависимость ΔC_P от 1/T для $[Zn_2(C_8H_4O_4)_2 \cdot C_6H_{12}N_2]$ ниже 60 K; ΔC_P представлена в логарифмическом масштабе

развития в понимании вопросов, связанных с механизмами нарушения зеркальной симметрии энантиомеров в твердых телах [19].

Работа поддержана грантом РНФ #16-12-10016.

- 1. A. Salam, J. Mol. Evol. 33, 105 (1991).
- 2. A. Salam, Phys. Lett. B 288, 153 (1992).
- W. Wang, F. Yi, Y. Ni, Z. Zhao, X. Jin, фтв Y. Tang, J. Biol. Phys. 26, 51 (2000).
- R. Sullivan, M. Pyda, J. Pak, B. Wunderlich, J. R. Thompson, R. Pagni, H. Pan, C. Barnes, P. Schwerdtfeger, and R. Compton, J. Phys. Chem. A 107, 6674 (2003).

- S. P. Gabuda and S. G. Kozlova, J. Chem. Phys. 141, 044701 (2014).
- S. P. Gabuda and S. G. Kozlova, J. Chem. Phys. 142, 234302 (2015).
- S.P. Gabuda, S.G. Kozlova, D.G. Samsonenko, D.N. Dybtsev, and V.P. Fedin, J. Phys. Chem. C 115, 20460 (2011).
- D. N. Dybtsev, H. Chun, and K. Kim, Angew. Chem. Int. Ed. 43, 5033 (2004).
- A. Yokozeki and K. Kuchitsu, Bull. Chem. Soc. Jap. 44, 72 (1971).
- I. E. Paukov, D. G. Samsonenko, D. P. Pischur, S. G. Kozlova, and S. P. Gabuda, J. Solid State Chem. 220, 254 (2014).
- 11. В. И. Гольданский, Успехи химии 44(12), 2122 (1975).
- 12. В.В. Тарасов, Журн. физ. химии 24(1), 111 (1950).
- B. Wunderlich, *Thermal Analysis*, Academic Press, San Diego (1990).
- G. Zhang and B. Wunderlich, J. Therm. Anal. 47, 899 (1996).
- А. З. Паташинский, В. Л. Покровский, Флуктуационная теория фазовых переходов, 2-е изд., Наука, М. (1982).
- H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University, Press, Oxford (1971).
- 17. К. Вильсон, Дж. Когут, Ренормализационная группа и ε-разложение, Мир, М. (1975).
- 18. В. Л. Покровский, УФН 94(1), 127 (1968).
- В.И. Гольданский, В.В. Кузьмин, УФН 157(1), 3 (1989).