Резонансное туннелирование с участием фононов и его фононный контроль¹⁾

Ф. В. Кусмарцев^{а 2)}, В. Д. Кревчик^b, М. Б. Семенов^{b 2)}, Д. О. Филатов^c, А. В. Шорохов^d, А. А. Бухараев^e, Ю. И. Дахновский^f, А. В. Николаев^g, Н. А. Пятаев^d, Р. В. Зайцев^b, П. В. Кревчик^b, И. А. Егоров^b, К. Ямамото^h, А. К. Арынгазинⁱ

^aLoughborough University, LE11 3TU Loughborough, United Kingdom

^bПензенский государственный университет, 440026 Пенза, Россия

^сНижегородский государственный университет им. Лобачевского, 603950 Нижний Новгород, Россия

^dМордовский государственный университет им. Огарёва, 430005 Саранск, Россия

^еКазанский физико-технический институт им. Завойского Казанского научного центра РАН, 420029 Казань, Россия

Казанский федеральный университет, 420008 Казань, Россия

^fUniversity of Wyoming, Laramie, WY 82071, USA

⁹Научно-исследовательский институт ядерной физики им. Скобельцына МГУ им. Ломоносова, 119991 Москва, Россия

Московский физико-технический институт (государственный университет), 141700 Долгопрудный, Россия

^hResearch Institute, International Medical Center, 2-25-22-304 Kohinata Bunkyo-ku, Tokyo, Japan

^{*i*}Институт фундаментальных исследваний Евразийского национального университета им. Гумилева, 010008 Астана, Казахстан

Поступила в редакцию 12 февраля 2016 г.

После переработки 1 августа 2016 г.

Экспериментально обнаружена серия острых резонансных особенностей в туннельной дифференциальной проводимости InAs квантовых точек. Показано, что эти особенности связаны с диссипативным квантовым туннелированием, которое оказывает сильное влияние на работу наноустройств. Из-за данного туннелирования вольт-амперная характеристика (BAX) туннельного контакта, созданного между наконечником зонда атомно-силового микроскопа и поверхностью InAs/GaAs квантовых точек, демонстрирует много интересных пиков. Найдено, что число, положение и высота данных пиков связаны с вовлеченными фононными модами. Для теоретического описания данного эффекта мы используем квазиклассическое приближение. В этом подходе туннельный ток связан с созданием разреженного инстантон-антиинстантонного газа. Наши экспериментальные данные хорошо описываются с помощью точно решаемой модели, в которой одна заряженная частица слабо взаимодействует с двумя фононными модами, связанными с внешней средой. Мы заключаем, что характеристики наноэлектронных устройств могут быть контролируемы подходящим выбором фононов, определяемых используемыми материалами.

DOI: 10.7868/S0370274X16180065

1. Введение. Одной из практических проблем полупроводниковой туннельной наноэлектроники является расширение контроля над параметрами квантового туннельного эффекта электронов [1–12]. Физические и химические подходы к процессам электронного транспорта на наномасштабах имеют некоторую общность используемых инструментов. А именно, аналитические модели многомерного диссипативного синхронного и асинхронного квантового туннелирования двух заряженных частиц, электронов или протонов, в низкоразмерных системах, используемые для изучения некоторых химических реакций при низких температурах [6–17], могут быть использованы для изучения физических свойств квантовых точек [7, 18–20].

Квазиклассический подход к диссипативному квантовому туннелированию частиц, взаимодействующих с термостатом, в модели разреженного

 $^{^{1)} \}rm Cm.$ дополнительные материалы к данной статье на сайте нашего журнала www.jetpletters.ac.ru.

²⁾e-mail: F.Kusmartsev@lboro.ac.uk; misha29.02@gmail.com

инстантон-антиинстантонного газа, как известно, является мощной техникой получения аналитических результатов, начиная от нахождения классического действия системы [1–4]. В частности, вероятность в единицу времени квантового туннелирования двух взаимно взаимодействующих заряженных частиц, движущихся в среде, для случая синхронных и асинхронных режимов, была найдена и исследована в нашей предыдущей работе [16].

Целью настоящей работы является идентификация экспериментально наблюдаемых диссипативных туннельных эффектов, предсказанных теорией Э.Дж. Леггета, А.И. Ларкина, Ю.Н. Овчинникова и др. В данной статье мы приводим результаты нашего недавнего экспериментального изучения влияния широкозонной матрицы на полупроводниковые InAs/GaAs(001) квантовые точки. Широкозонная матрица изменяет некоторые макроскопические свойства системы и может быть идентифицирована туннельными ВАХ туннельных устройств. Параметр, связанный с данным влиянием может быть рассмотрен как один из управляемых параметров наноструктур в дополнение к энергетическим уровням квантовых точек, которые управляются их размерами. Заметим, что роль широкозонной матрицы в контроле над мезоскопическими системами была подчеркнута в [5]. Также мы развиваем и применяем 1D модель диссипативного туннелирования с учетом влияния двух промотирующих фононных мод, выходящих из широкозонной матрицы, чтобы изучить квантовое туннелирование в структуре "одиночная квантовая точка – проводящий атомный силовой микроскоп (CAFM)".

Мы делаем сравнение теоретически полученной вероятности туннелирования в единицу времени в осцилляторном режиме с экспериментальными ВАХ контакта между атомным силовым микроскопом (AFM) и поверхностью InAs/GaAs(001) квантовой точки.

2. Вероятность в единицу времени 1D диссипативного туннелирования с учетом двух локальных мод в широкозонной матрице. Прежде всего кратко опишем используемый подход диссипативного туннелирования, который будет использован для нашей конкретной модели. Пусть p_1 – импульс туннелирующей частицы, y_1 – координата туннелирующей частицы, v_1 – двухъямный потенциал. Тогда Гамильтониан

$$\hat{H} = \frac{p_1^2}{2} + v_1(y_1) + y_1 \sum_{\alpha=2}^{N} C_{\alpha} y_{\alpha} + \frac{1}{2} \sum_{\alpha=2}^{N} (p_{\alpha}^2 + \omega_{\alpha}^2 y_{\alpha}^2) \quad (1)$$

Письма в ЖЭТФ том 104 вып. 5-6 2016

описывает частицу в модели асимметричного двухъямного осцилляторного потенциала v_1 вдоль туннельной координаты y_1 . В формуле (1) p_{α} – импульсы фононных мод частицы массой m = 1, y_{α} – координаты локальных фононных мод, ω_{α} – частоты локальных фононных мод, N – число локальных фононных мод широкозонной матрицы и C_{α} – коэффициенты взаимодействия туннелирующих частиц с локальными фононными модами широкозонной матрицы (см. [13, 16, 17] для деталей).

Квазиклассическое действие $S\{y_1\}$ системы определяется следующим выражением [13, 16, 17]

$$S\{y_1\} = \int_{-\beta/2}^{\beta/2} d\tau \left[\frac{1}{2}\dot{y}_1^2 + v(y_1) + \frac{1}{2}\int_{-\beta/2}^{\beta/2} d\tau' K(\tau - \tau') y_1(\tau)y_1(\tau')\right].$$
 (2)

Здесь и далее точка обозначает производную по τ , $\beta = 2\pi h/k_B T$ – обратная температура, $K(\tau) =$ $= T \sum_{\omega_n} K(\omega_n) \exp(-i\omega_n \tau)$ – мацубаровская функция Грина [1, 2], $K(\omega_n) = -\sum_{\alpha} C_{\alpha}^2/(\omega_{\alpha}^2 + \omega_n^2)$, $\omega_n =$ $= 2\pi T n$, и мы ввели перенормированный потенциал $v(y_1)$

$$v(y_1) = v_1(y_1) - \frac{1}{2} \sum_{\alpha=2}^{N} \frac{C_{\alpha}^2}{\omega_{\alpha}^2} y_1^2.$$
 (3)

Форма потенциала v как функции перенормированной координаты q показана на рис. 1. Процедуры

Рис. 1. Асимметричный двухъямный потенциал вдоль туннельной координаты q модели

перенормировки потенциала $v_1(y_1)$ и координаты y_1 рассмотрены в [17].

В инстантонном приближении 1D евклидовое действие S_B для одной заряженной частицы в двухъямном перенормированном осцилляторном потенциале и внешнем электрическом поле E найдено в [13, 14, 18]

$$S_{B} = 2\omega_{0}^{2} (q_{0} + q_{1}) q_{0}\tau_{0} - \frac{2\omega_{0}^{2} (q_{0} + q_{1})^{2} \tau_{0}^{2}}{\beta} - \frac{4\omega_{0}^{4} (q_{0} + q_{1})^{2}}{\beta} \sum_{n=1}^{\infty} \frac{\sin^{2} \nu_{n} \tau_{0}}{\nu_{n}^{2} (\nu_{n}^{2} + \omega_{0}^{2} + \zeta_{n})}, \qquad (4)$$

где e – заряд частицы, $q_0 = b^* - |e|E/\omega_0^2$ и $q_1 = b^* + |e|E/\omega_0^2$ – параметры перенормированного двухъямного потенциала во внешнем электрическом поле $E, \pm b^*$ – положения минимумов потенциала в случае нулевого поля, τ_0 – центр инстантона, ω_0 – частота осцилляторного потенциала, $\nu_n = 2\pi n/\beta$ – мацубаровская частота, n = 1, 2, 3, ..., и ζ_n – компонента Фурье ядра для соответствующего квазиклассического уравнения движения Эйлера–Лагранжа

$$\zeta_n = \nu_n^2 \sum_{\alpha=2}^N \frac{C_\alpha^2}{\omega_\alpha^2 \left(\omega_\alpha^2 + \nu_n^2\right)}.$$
 (5)

Вероятность в единицу времени квантового туннелирования частицы через барьер, показанный на рис. 1, $\Gamma = B \exp(-S_B)$ содержит предэкспоненциальный множитель *B*, наибольший вклад в который дается частицами, траектории которых очень близки к инстантону. Раскладывая действие до квадратичного по $q - q_B$ слагаемого, где q_B – экстремальная траектория инстантона, и интегрируя по функциональному пространству, получим

$$B = \left[\frac{S_0}{2\pi} \cdot \frac{\det\left(\frac{\delta^2 S}{\delta q^2}\right)_{q=-q_0}}{\det'\left(\frac{\delta^2 S}{\delta q^2}\right)_{q=q_B(\tau)}}\right]^{1/2},\qquad(6)$$

где

$$S_0 = \int_{-\beta/2}^{\beta/2} \dot{q}_B^2(\tau) \, d\tau.$$
 (7)

Здесь det' обозначает детерминант с опущенным нулевым собственным значением, соответствующим нулевой моде инстантона. Мы также использовали приближение разреженного инстантонантиинстантонного газа, т.е. мы считали, что вероятность туннелирования в единицу времени много меньше, чем обратная ширина инстантона

$$\Gamma \ll \left(\Delta \tau\right)^{-1}.\tag{8}$$

Мы предполагаем, что главный вклад в действие $S\{q\}$ дается инстантоном, т.е. траекторией $q_B(\tau)$, которая минимизирует действие (4) и подчиняется уравнению Эйлера–Лагранжа:

$$-\ddot{q}_B(\tau) + \frac{\partial v(q_B)}{\partial q_B} + \int_{-\beta/2}^{\beta/2} d\tau' K(\tau - \tau') q_B(\tau') = 0.$$
(9)

Здесь траектория $q_B(\tau)$ найдена на классе периодических функций $q_B(\tau) = q_B(\tau + \beta)$. Форма решения уравнения (9), подчиняющаяся этому условию, показана на рис. 2.

Рис. 2. Инстантон $q_B(\tau)$ для $\tau > 0$. τ_0 и $\Delta \tau$ – так называемые центр и ширина инстантона, соответственно

Используя действие (4), получим следующее B из формулы (6):

$$B = \frac{2\omega_0^2 (q_0 + q_1)^2}{(2\pi\beta)^{1/2}} \sum_{n = -\infty}^{\infty} \frac{\sin^2 \nu_n \tau_0}{\lambda_{0n}} \left(\sum_{n = -\infty}^{\infty} \frac{\cos 2\nu_n \tau_0}{\lambda_{0n}} \right)^{-1/2}$$
(10)

Сейчас мы конкретизируем нашу модель, предполагая, что частицы взаимодействуют слабо с двумя локальными фононными модами, т.е. $\omega_{L1} = \omega_2$ и $\omega_{L2} = \omega_3$. Мы также делаем естественное предположение, что взаимодействия слабые, т.е. $C_{\alpha}/\omega_0^2 \ll 1$ и $C_{\alpha}/\omega_L^2 \ll 1$. В этом случае получим

$$\zeta_n = \nu_n^2 \frac{C_2^2}{\omega_2^2(\omega_2^2 + \nu_n^2)} + \nu_n^2 \frac{C_3^2}{\omega_3^2(\omega_3^2 + \nu_n^2)}.$$
 (11)

Используя довольно громоздкие расчеты, можно получить аналитические формулы для оптимального действия \tilde{S}_B и предэкспоненциального множителя B. Из-за их большого объема мы приводим их в дополнительных материалах [21]. Для полноты следует упомянуть, что существует второе решение, которое соответствует случаю неосциллирующего характера вероятности в единицу времени. Мы коротко представляем результаты для этого случая также в дополнительных материалах [21].

3. Экспериментальная установка. Экспериментальная установка показана на рис. 3. Изучаемые образцы были приготовлены на n⁺-GaAs(001) подложке, легированной Sn, с использованием метода МОС гидридной эпитаксии при атмосферном давлении.

Рис. 3. (a) – Схематическое изображение экспериментальной установки для измерения электрического тока между зондом AFM и проводящей подложкой через InAs/GaAs(001) квантовую точку методом CAFM. (b) – Изображение поверхности InAs/GaAs(001) квантово точечной структуры, полученное AFM; размер 750 на 700 нм, диапазон высот – 5.9 нм

Буферный слой n⁺-GaAs толщиной 200 нм, легированный Si, с концентрацией доноров $N_D \simeq$ $\simeq 10^{18}$ см⁻³ был выращен при температуре T == 650 C. Спейсерный слой *n*-GaAs с $N_D \simeq 10^{15}$ см⁻³ толщиной 3 нм был выращен на буферном слое. Этот слой формирует треугольный потенциальный барьер между квантовой точкой и буферным слоем n⁺-GaAs [22]. InAs квантовые точки были сформированы по механизму Странски–Крастанова при T = 530 C. Номинальная толщина осажденного слоя InAs составляла около 1.5 нм.

Образцы были приготовлены в Научноисследовательском физико-техническом институте Нижегородского государственного университета им. Лобачевского и затем использованы для изучения пространственного и энергетического вклада локальной плотности состояний в InAs квантовую точку методом AFM в Казанском физикотехническом институте им. Завойского Казанского научного центра PAH.

Заметим, что в [23] локальная плотность состояний была измерена методом проводящей атомносиловой микроскопии (CAFM). В [24] сканирующий туннельный микроскоп (STM) был использован в условиях сверхвысокого вакуума (UHV) для измерения локальной плотности состояний квантовых ям GaSb/InAs. В [25] комбинированный UHV STM/AFM метод был впервые реализован для туннельной спектроскопии размерно-квантованных состояний InAs/GaAs (001) поверхностных кванто-

вых точек, были получены туннельные спектры и токовые изображения, которые отражают энергетические и пространственные распределения локальной плотности основного и возбужденных состояний в квантовых точках. В [26] были представлены туннельная AFM техника и результаты ex situ исследований локальной плотности состояний квантово ограниченных состояний в самоорганизующихся полупроводниковых InAs/GaAs(001) квантовых точках и InGaAs/GaAs InAs/GaAs(001) квантовых кольцах, выращенных методом осаждения металлорганических соединений из газообразной фазы при атмосферном давлении (AP-MOVPE), а также GeSi/Si InAs/GaAs(001) наноостровках, покрытых естественным окислом. В данной работе образцы с поверхностными наноструктурами были сканированы поперек проводящим Si AFM зондом, покрытым проводящим покрытием (Pt, W₂C, или алмазоподобная пленка) в контактном режиме. Главным преимуществом туннельного AFM по сравнению с UHV STM является то, что первый позволяет проведение ex situ исследования поверхности полупроводниковых наноструктур, которые естественно окислены окружающим воздухом, когда образцы берутся из установки роста в AFM установку.

Наш эксперимент был выполнен при комнатных температурах, при условиях очень высокого вакуума в камере, сканирующим зондовым микроскопом Omicron UHV AFM/STM VT, который является частью установки Omicron MultiProbe P. Базовое давление в камере было около 10^{-10} Topp. Поверхность образца окислялась окружающим воздухом во время транспортировки из установки роста в вакуумную камеру. Она была сканирована p⁺-Si зондом с W₂C покрытием, в контактном режиме (см. рис. 3), с разностью потенциалов V_g между n⁺-GaAs подложкой и зондом AFM.

В эксперименте мы получили пространственное распределение электрического тока *I*_t между зондом AFM и образцом как функцию координаты зонда AFM (x, y) в плоскости поверхности образца при различных константах V_q. Мы будем называть эти распределения токовыми изображениями. Они отражают локальную плотность состояний в плоскости: отображение волновой функции [24] с суммой по энергиям ниже уровня Ферми зонда. Мы не представляем здесь результирующие токовые изображения и упомянем только, что для поперечной разности потенциалов V_q = 2.6...3.1 В они демонстрируют два максимума, соответствующих *p*-симметрии возбужденных состояний квантовых точек, тогда как при более низком напряжении $V_q < 2.6 \,\mathrm{B}$ токовые изображения имеют круглую форму, соответствующую *s*-симметрии основного состояния [27].

ВАХ контакта между зондом AFM и квантовой точкой были получены измерением токовых изображений при различных фиксированных V_g . Больше деталей об использованном методе роста и туннельной спектроскопии квантовых точек может быть найдено, например, в [28].

На рис. 3b представлено AFM изображение поверхности изучаемого образца. Поверхность квантовых точек имеет толщину от 5 до 6 нм. Следует заметить, что латеральные размеры квантовых точек, показанные на рис. 3b, существенно больше, чем те, которые ожидались бы для квантовых точек от 10 до 12 нм, имеющих форму четырехгранной пирамиды с плоскостями (101). Это объясняется эффектом свертывания, связанным с кривизной зонда AFM, характеризуемого радиусом $R_p \simeq 35$ нм.

4. Сравнение с экспериментом. Возвратимся к сравнению полученных теоретических результатов для вероятности 1D квантового туннелирования в единицу времени заряженных частиц, слабо взаимодействующих с двумя локальными модами среды, с экспериментальными BAX InAs/GaAs(001) квантовых точек, измеренными с использованием CAFM.

На рис. 4 мы изобразили экспериментальные ВАХ и полученные теоретические результаты для вероятности туннелирования в единицу времени Γ , которую мы рассматриваем как пропорциональную току I, как функцию параметра $b = q_0$, линейно зависяще-

Рис. 4. (Цветной онлайн) Сравнение теоретического результата (осциллирующий случай) для вероятности 1D квантового туннелирования в единицу времени Г заряженных частиц, слабо взаимодействующих с двумя локальными фононными модами среды (кривая 2) как функции параметра симметрии b, линейно зависящего от интенсивности внешнего электрического поля E, с экспериментальной ВАХ для контакта зонд-образец для InAs/GaAs(001) квантовой точки при температуре 300 К (представленный как кривая 1), полученной в эксперименте с помощью проводящей атомно-силовой микроскопии. Показанные на осях численные значения выражены в единицах приложенного напряжения, меняющегося в диапазоне V_g = 0.0...4.0 В с шагом 100 мВ и точностью 1 мВ, и тока I, в пА, измеренного с точностью 10 пА

го от напряженности внешнего электрического поля E, которая, в свою очередь, линейно зависит от поперечной разности потенциалов V.

Подгоночными параметрами являются частоты локальных фононных мод и константы связи частиц к этим модам. Значения других параметров модели, а именно, параметров двухъямного потенциала, температуры и напряженности внешнего электрического поля были заданы экспериментом.

Наблюдаемые пики происходят не из-за кулоновской блокады, поскольку они не эквидистантны. Иногда эти пики интерпретируют как результат резонансных явлений в туннелировании.

Тогда как положение наиболее высоких резонансных теоретических пиков соответствует эксперименту, их высота ниже примерно на 20%. Также заметим, что наиболее высокий резонансный пик демонстрирует признаки появления двух дополнительных пиков, соответствующих двум теоретическим пикам, близким к наиболее высокому. Это может быть объяснено приблизительным характером используемого асимметричного двухъямного осцилляторного потенциала.

Случай неосциллирующего характера вероятности туннелирования в единицу времени, очевидно, не соответствует экспериментальным данным. Тем не менее, мы представляем коротко полученные для даного случая результаты в дополнительных материалах [21]. Это затухающее решение является ценным, т.к. говорит нам о том, носит ли вероятность в единицу времени осциллирующий или неосциллирующий характер, как зависит от температуры, интенсивности внешнего электрического поля E, и типа пирокозонной матрицы, которая окружает изучаемые квантовые точки.

5. Заключение. Наши измерения обнаружили богатый спектр неупругих, с участием фононов, электронных туннельных процессов в InAs/GaAs квантовых точках. Число, положение и высота наблюдаемых резонансных пиков хорошо описываются в рамках расширенного инстантонного подхода, включающего диссипативное квантовое туннелирование. Хорошее согласие с экспериментом было достигнуто с использованием модели, в которой неупругие туннельные переходы стали разрешены. В этой модели широкозонной матрицы InAs/GaAs квантовых точек были учтены две локальные фононные моды. Сравнение между экспериментом и развитой теорией позволяет нам исследовать электронфононное взаимодействие в этой системе и идентифицировать спектроскопически энергии и природу фононов, испускаемых во время туннелирования.

Практическим значением полученных результатов является то, что вольт-амперные характеристики полупроводниковых туннельных наноэлектронных устройств могут быть управляемы, в известной мере, модуляцией параметров широкозонной матрицы. Например, квантовые точки могут служить очень чувствительными детекторами свойств объемных материалов, используемых в прецизионной наноэлектронике.

Необходимо заметить, что теория диссипативного квантового туннелирования с влиянием двух локальных фононных мод во внешнем электрическом поле, развитая в данной статье, может быть использована для решения проблем резонансных примесных состояний в квантовых молекулах в случае, когда время жизни примесных электронов в основном определяется электронным туннельным распадом.

Проблема влияния электрического поля на спектры излучательной рекомбинации электронов и дырок в квантовой точке также интересна [29, 30]. В этом случае электронное туннелирование между

Письма в ЖЭТФ том 104 вып. 5-6 2016

квантовой точкой и биологическим объектом может играть важную роль.

А.К.А., М.Б.С. и В.Д.К. благодарны комитету по науке Министерства образования и науки Казахстана за частичную финансовую грантовую поддержку. Часть данной работы была сделана в рамках государственного задания высшим учебным заведениям и научным организациям в сфере научной деятельности Министерства образования и науки Российской Федерации. Авторы также благодарны А.Дж. Леггету за его внимание к этой работе; Б.Н. Звонкову, Научно-исследовательский физико-технический институт Нижегородского государственного университета им. Лобачевского, за образцы квантовых точек, использованных в CAFM эксперименте; П.А. Бородину за содействие в проведении CAFM эксперимента и И.Е. Булыжненкову и Ю.Н. Овчинникову за полезные дискуссии.

- A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
- А.И. Ларкин, Ю.Л. Овчинников, Письма в ЖЭТФ 37, 322 (1983).
- И.Э. Булыженков, Б.И. Ивлев, ЖЭТФ 74, 224 (1978).
- А.И. Ларкин, Ю.Л. Овчинников, ЖЭТФ 91, 318 (1986).
- Y. Imry, Introduction to Mesoscopic Physics, Oxford University Press, Oxford (2008).
- Transfer Processes in Low-Dimensional Systems, ed. by Yu.I. Dahnovsky, V.D. Krevchik, V.Ya. Krivnov, M.B. Semenov, and K. Yamamoto, UT Research Institute Press, Tokyo (2005).
- Управляемое диссипативное туннелирование. Туннельный транспорт в низкоразмерных системах, под ред. Э. Дж. Леггета, Физматлит, М. (2011).
- A. Venkatesan, K. J. Lulla, V. J. Patton, A. D. Armour, C. J. Mellor, and J. R. Owers-Bradley, Phys. Rev. B 81, 073410 (2010).
- Yu. Bomze, H. Mebrahtu, I. Borzenets, A. Makarovski, and G. Finkelstein, Phys. Rev. B 79, 241402(R) (2009).
- D. K. Ferry, S. M. Goodnick, and J. Bird, Transport in Nanostructures, Cambridge University Press, Cambridge (2009).
- L. G. G. V. Dias da Silva and E. Dagotto, Phys. Rev. B 79, 155302 (2009).
- A. Grodecka, P. Machnikowski, and J. Forstner, Phys. Rev. B 78, 085302 (2008).
- Ю. И. Дахновский, А. А. Овчинников, М. Б. Семенов, ЖЭТФ 92, 955 (1987).
- Yu.I. Dahnovsky and M.B. Semenov, J. of Chemical Physics 91, 7606 (1989).

- В. Ф. Гантмахер, М. В. Фейгельман, УФН 168, 113 (1998).
- A.K. Aringazin, Yu. Dahnovsky, V.D. Krevchik, M.B. Semenov, A.A. Ovchinnikov, and K. Yamamoto, Phys. Rev. B 68, 155426 (2003).
- Yu. I. Dahnovsky, A. A. Ovchinnikov and M. B. Semenov, Molecular Physics 63, 497 (1988).
- В.Ч. Жуковский, О.Н. Горшков, В.Д. Кревчик, М.Б. Семенов, Е.В. Грозная, Д.О. Филатов, Д.А. Антонов, Вестник Московского университета. Серия 3. Физика–Астрономия 61, 27 (2009).
- В.Ч. Жуковский, Ю.И. Дахновский, О.Н. Горшков, В.Д. Кревчик, М.Б. Семенов, Ю.Г. Смирнов, Е.В. Чупрунов, В.А. Рудин, Н.Ю. Скибицкая, П.В. Кревчик, Д.О. Филатов, Д.А. Антонов, М.А. Лапшина, К. Ямамото, М.Е. Шенина, Вестник Московского университета. Серия 3. Физика– Астрономия 5, 3 (2009).
- В.Ч. Жуковский, Ю.И. Дахновский, В.Д. Кревчик, М.Б. Семенов, В.Г. Майоров, Е.И. Кудряшов, Е.В. Щербакова, К. Ямамото, Вестник Московского университета. Серия 3. Физика. Астрономия 2, 10 (2007).
- 21. См. дополнительные материалы к данной статье на сайте нашего журнала www.jetpletters.ac.ru.
- 22. А.А. Бухараев, Н.В. Бердунов, Д.В. Овчинников,

К. М. Салихов, Микроэлектроника 26, 163 (1997).

- K. M. Lang, D. A. Hite, R. W. Simmonds, R. Mc Dermott, D. P. Pappas, and J. M. Martinis, Rev. Sci. Instruments 75, 2726 (2004).
- K. Suzuki, K. Kanisawa, C. Janer, S. Perraud, K. Takashina, T. Fujisawa, and Y. Hirayama, Phys. Rev. Lett. 98, 136802 (2007).
- P.A. Borodin, A.A. Bukharaev, D.O. Filatov, D.A. Vorontsov, and M.A. Lapshina, J. Surf. Investigations: X-ray, Synchrotron, and Neutron Techniques 3, 721 (2009).
- 26. D. Filatov, V. Shengurov, N. Nurgazizov, P. Borodin, and A. Bukharaev, in: Tunneling atomic force microscopy of self-assembled In(Ga)As/GaAS quantum dots and rings and of GeSi/Si (001) nanoislands, Fingerprints in the optical and transport properties of quantum dots, ed. by A. Al-Ahmadi, Published in Tech, Croatia (2012), p. 273.
- O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999).
- T. Maltezopoulos, A. Bolz, Ch. Meyer, Ch. Heyn, W. Hansen, M. Morgenstern, and R. Wiesendanger, Phys. Rev. Lett. **91**, 196804 (2003).
- 29. Г. Г. Зегря, Письма в ЖТФ **32**, 75 (2006).
- Г. Г. Зегря, Д. М. Самосват, ЖЭТФ 1043, 1043 (2009).