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Quantum state tomography is a general notion
standing for a set of statistical methods for the recon-
struction of a density matrix, describing an unknown
quantum state, using the experimental data. The first
solution to the problem was developed by Hradil back
in 1997 [1], and it was based on the well-known con-
cept of maximum-likelihood estimation (MLE). A differ-
ent perspective on quantum state estimation is offered
by Bayesian statistics [2, 3]. Here inference is based on
consistent application of the Bayes rule for conditional
probability. At first some prior probability distribution
over the state space p(p) should be specified. When the
measurements are performed and the data collected, the
distribution should be updated using the Bayes rule to
obtain the posterior distribution p(p|D) o< L(p; D)p(p),
where D = {v,} is the set of all measurement outcomes
v; — the actual data, used for inference. A natural point
estimate for the unknown state would be a Bayesian
mean estimate (BME) ppyve = [ pp(p|D)dp. In con-
trast to MLE, besides a point estimate, Bayesian infer-
ence provides a whole distribution, which may be used
to estimate error bars, as well as to obtain estimates
for any properties of the state of interest as averages
over the posterior. We are particularly interested in the
Bayesian approach to state estimation, because it allows
for an easy implementation of adaptive measurement
strategies.

In order to quantify the deviation of the state from
some ideal one, which the experimentalist intended to
prepare, we need to define the distance on the space of
quantum states. The most widely used distinguishabil-
ity measure for the tomographic scenario is the fidelity:
F(p1,p2) = [Tr \/0_1/12\//)_1}2

Different tomography protocols — estimation strate-
gies, based on a particular choice of an estimator and
measurements, should be compared to each other and
optimized for precision. We are mostly concerned with
the behavior of infidelity as a function of the sample
size N — the overall number of measurement outcomes
registered. The ultimate limits of precision are known
at least for qubits, and are set by collective protocols,
where a complicated measurement is performed on the
whole ensemble of N qubits. The problem was consid-
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ered for pure states in [4] where the bound for fidelity,
now known as the Massar—Popescu bound was derived:
F < (N +1)/(N + 2). At the same time tomography
with local measurements achieves 1 — F' ~ +/N only.
A natural question arises: is it possible to come closer
to this ultimate bound with local (one qubit at a time)
measurements? The answer turns out to be positive,
but the structure of the protocol should be changed sig-
nificantly — it should become an adaptive estimation
scheme.

One can show, that if the state was known a pri-
ori, the best strategy would have been to make mea-
surements in the basis, which diagonalizes p [5]. Now
it is straightforward to come up with a simple adaptive
strategy: one has to perform standard 6-state tomog-
raphy on some fraction of Ny qubits and obtain a pre-
liminary estimate for p. Then one rotates the measure-
ment basis, such that it coincides with the eigenbasis
of p and performs the remaining N— N, measurements.
The first experimental demonstration of two-step adap-
tive tomography was performed for polarization qubits
and confirmed the quadratic improvement in infidelity
scaling [5].

A natural extension of the two-step adaptive strat-
egy is a fully adaptive protocol, where the measure-
ment basis is realigned with the current estimate af-
ter every measurement. Such a protocol was consid-
ered in [6] for a 4-state optimal POVM. However,
to the best of our knowledge, it was never imple-
mented experimentally. This kind of adaptive strat-
egy is a particular case of a general approach, known
as self-learning measurements or adaptive experimen-
tal design. Let M, be the POVM, corresponding to
some particular choice of settings in the experimen-
tal apparatus, which we denote a. From the Bayesian
point of view an algorithm for self-learning measure-
ments may be reduced to the following scheme [7]: the
first measurement setting aq is chosen at random; n-th
measurement is chosen by optimizing a selected util-
ity function U(a, D) averaged over the possible mea-
surement outcomes: o, = arg maz}XZp(’ynM)U(a,Dn).

Tn
Here the probability p(y,|a) of observing a particu-
lar outcome =, should be calculated using the cur-
rent posterior distribution for the state p: p(y,|a) =

= [ dpp(p|Dp—1)Tr [Mar, p] -

IIucema B 2KOT® Tom 104 2016

BBII. 7—8



Adaptive Quantum Tomography 541

Utility functions may be roughly divided in two
groups. In the first one the utility functions are con-
structed to optimize the parameters of the estimate.
Examples are A-optimality, where the minimized quan-
tity is the trace of the covariance matrix for the esti-
mate and D-optimality, where the determinant of the
same matrix is minimized. The second group focuses on
the information gain of an experiment. On information-
theoretic grounds the utility function here is chosen to
be the expected relative entropy between the posterior
p(p|D, ) and the prior p(p) distributions: U(a, D) =
= [dpp(p|D, a)log %. Both types of utility func-
tions were used in the design of adaptive protocols for
quantum tomography. Adaptive protocols demonstrate
the optimal scaling of infidelity 1 — F = aN !, with the
prefactor a slightly varying depending on the particular
choice of the utility function and other details of the
protocol.

Adaptive Bayesian experimental design for optimal
quantum tomography of qubits was first proposed in
[8] and performed experimentally by Hannemann et al.
[9]. The optimal measurements were precomputed and
stored in the look-up table, rather than be performed
online. Online implementation of self-learning measure-
ments was first demonstrated in [10]. The first experi-
ment, where full tomography of qubits with self-learning
measurements was implemented online in the course of
experiment, was reported by Kravtsov et al. [11]. This
was made possible by the development of a fast Bayesian
protocol using the information gain as a utility function
by Huszar and Houlsby [12]. The experimental results
of [11] confirmed the advantage of the adaptive proto-
col over both standard 6-state MUB measurements and
random measurements, sampled from the optimal uni-
form POVM.

Implementing adaptive strategies for multi-qubit
states is hard for two main reasons. First of all, the com-
putational complexity of high-dimensional optimization
required to find an optimal measurement quickly be-
comes overwhelming for most of the self-learning strate-
gies. Second problem is that optimal measurements in
high dimensions almost certainly turn out to be pro-
jections on entangled states, which are extremely hard
to do in experiment. There may be, however, paths to
partly overcome both problems, which became recently
an area of active research. The first route, recently taken
in [13] and [14], is based on using optimization algo-
rithms, that are fast enough to be implemented online
even for systems of several qubits. Both works report ex-
periments with polarization states of correlated photon
pairs.

There are no experimental demonstrations going be-
yond two qubits so far, and that may be challenging
in terms of computational time even for the fastest al-
gorithms. Algorithms, based on heuristics, rather than
IMucbma B 2K9TD
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precise evaluation of the utility function, with self-
guided tomography [15, 16] being an example, may be
fast enough to be used online in experiments with few
qubits. It would be interesting to see such experiments
performed in the nearest future.

The full text of this review article will the full list
of references and figures be published in JETP Letters.
In the full article we discuss several statistical frame-
works for adaptive experimental design. We argue in
favor of the Bayesian approach, highlighting both its
advantages for a statistical reconstruction of unknown
quantum states and processes, and utility for adaptive
experimental design. The discussion is supported by an
analysis of several recent experimental implementations
and numerical recipes.
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