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Last decade, there was a revival of the interest

within different self-consistent nuclear approaches to

study the particle-phonon coupling (PC) effects in the

single-particle energies (SPEs) of magic nuclei (see [1]

and Refs. therein). In this work we extend the field of

this problem to semi-magic nuclei.

A semi-magic nucleus consists of two sub-systems

with different properties. One of them, magic, is normal,

whereas the non-magic counterpart is superfluid. We

will consider the SPEs of the normal sub-system only.

Therefore, the main part of the formalism for magic nu-

clei [1] remains valid. Some new difficulty arises in non-

magic nuclei due to appearance of low-lying 2+ states

which is a characteristic feature of such nuclei. As a

result, small denominators appear regularly in the ex-

pressions for the PC corrections to SPEs which makes

unapplicable a plane perturbation theory which is used

in magic nuclei.

To find the SPEs with account for the PC effects,

we solve the following equation:

(

ε−H0 − δΣPC(ε)
)

φ = 0, (1)

where H0 is the quasiparticle Hamiltonian with the

spectrum ε
(0)
λ and δΣPC is the PC correction to the

quasiparticle mass operator Σ. The δΣPC correction,

just as in magic nuclei, is found within so-called g2L-

approximation, where gL is the vertex of creating the

L-phonon. The tadpole term is taken into account ap-

proximately, following to [1].

In magic nuclei, the perturbation theory in δΣPC

with respect to H0 was used to solve this equation. In

this work, we solve Eq. (1) directly, without any addi-

1)e-mail: Sapershtein_EE@nrcki.ru; saper43_7@mail.ru

tional approximations. The vertex gL obeys now the

QRPA-like TFFS equation [2, 3]

ĝL(ω) = F̂Â(ω)ĝL(ω), (2)

where all the terms are 3× 3 matrices containing a nor-

mal and anomalous components. For solving the above

equations we use the self-consistent basis generated by

the version DF3-a [4] of the Fayans EDF [5]. In this work

we consider four even lead isotopes, 200, 202, 204, 206Pb,

and two phonons, 2+1 and 3−1 .

As the PC corrections are important only for the

SPEs nearby the Fermi surface, we limit ourselves with

a model space S0 including two shells close to it, i.e., one

hole and one particle shells. In this case, there is only

one state for each (l, j) value. Therefore, we need only

diagonal elements δΣPC

λλ , and Eq. (1) reduces as follows:

ε− ε
(0)
λ − δΣPC

λλ (ε) = 0. (3)

For the model space under consideration and two

L-phonons, Eq. (3) has about ten solutions εiλ for each

λ. The corresponding single-particle (SP) strength dis-

tribution factors (S-factors) are

Si
λ =

(

1−

(

∂

∂ε
δΣPC(ε)

)

ε=εi
λ

)

−1

. (4)

Two typical examples of S-factors in 204Pb are dis-

played in Fig. 1. In the upper case, there is a state |λ, i0〉

with dominating Si0
λ value (a “good” SP state). In such

cases, we use the following prescription for the PC cor-

rected SP characteristics:

ελ = εi0λ ; ZPC

λ = Si0
λ . (5)
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Fig. 1. (Color online) Some S-factors in 204Pb

The down panel represents a case of a strong spread,

and we suggest the following generalization of Eq. (5):

ελ =
1

ZPC

λ

∑

i

εiλS
i
λ, Z

PC

λ =
∑

i

Si
λ. (6)

In both the above sums, only the states |λ, i〉 with ap-

preciable values of Si
λ are included. In practice, we in-

clude in these sums the states with Si
λ > 0.1. The value

of ελ is just the centroid of the single particle energy

distribution.

The results for SPEs and Z-factors are presented in

Table 1. We see that the tadpole correction to the SPEs

is of primary importance. It confirms a tendency found

previously in magic nuclei [1].

To resume, a method is developed to find the PC

corrections to SPEs for semi-magic nuclei beyond the

perturbation theory in the PC correction to the mass

operator δΣPC(ε) with respect to Σ0. Instead, the Dyson

equation with the mass operator Σ(ε) = Σ0 + δΣPC(ε)

is solved directly, without any use of the perturbation

theory. The method is checked for a chain of even Pb iso-

topes. This makes it possible to extend to semi-magic

nuclei the field of consistent consideration of the PC

corrections to the double odd-even mass differences and

some another problems.
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Table 1. PC corrected proton SP characteristics ελ and Zλ of

even Pb isotopes. The total correction to the SPE δεPC

λ = ελ−ε
(0)
λ

is presented. The corresponding tadpole correction δεtadλ is given

separately

Nucleus λ ε
(0)
λ δεtadλ δεPC

λ ελ Zλ

200Pb 1i13/2 −0.26 0.39 0.13 −0.13 0.96

2f7/2 −1.05 0.24 −0.30 −1.35 0.83

1h9/2 −2.33 0.33 0.12 −2.21 0.93

3s1/2 −5.81 0.20 0.01 −5.80 0.89

2d3/2 −6.67 0.21 0.17 −6.50 0.89

1h11/2 −7.06 0.37 0.25 −6.81 0.93

2d5/2 −7.88 0.21 0.28 −7.60 0.88

1g7/2 −9.97 0.29 0.08 −9.89 0.91
202Pb 1i13/2 −0.74 0.41 0.13 −0.61 0.95

2f7/2 −1.52 0.25 −0.29 −1.81 0.83

1h9/2 −2.86 0.34 0.13 −2.73 0.93

3s1/2 −6.26 0.21 0.01 −6.25 0.89

2d3/2 −7.09 0.22 0.17 −6.92 0.89

1h11/2 −7.52 0.38 0.25 −7.27 0.93

2d5/2 −8.34 0.22 0.30 −8.04 0.87

1g7/2 −10.46 0.30 0.08 −10.38 0.91
204Pb 1i13/2 −1.21 0.32 0.14 −1.07 0.97

2f7/2 −2.01 0.20 −0.23 −2.24 0.87

1h9/2 −3.36 0.27 0.17 −3.19 0.96

3s1/2 −6.72 0.17 0.23 −6.49 0.84

2d3/2 −7.51 0.17 0.05 −7.46 0.94

1h11/2 −7.98 0.30 0.25 −7.73 0.95

2d5/2 −8.80 0.18 0.17 −8.63 0.92

1g7/2 −10.93 0.24 0.13 −10.80 0.95
206Pb 1i13/2 −1.67 0.30 0.07 −1.60 0.89

2f7/2 −2.51 0.19 −0.30 −2.81 0.82

1h9/2 −3.82 0.25 0.19 −3.63 0.97

3s1/2 −7.18 0.16 0.08 −7.10 0.89

2d3/2 −7.91 0.16 0.11 −7.80 0.86

1h11/2 −8.42 0.27 0.37 −8.05 0.88

2d5/2 −9.28 0.16 0.12 −9.16 0.95

1g7/2 −11.36 0.22 0.24 −11.12 0.90
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