Сверхпроводящие свойства длинных проволок TiN¹⁾

А. Ю. Миронов^{*+ 2)}, С. В. Постолова^{*+}, Д. А. Насимов^{*}

*Институт физики полупроводников им. А.В. Ржанова СО РАН, 630090 Новосибирск, Россия

+ Новосибирский государственный университет, 630090 Новосибирск, Россия

Поступила в редакцию 20 сентября 2016 г. После переработки 20 октября 2016 г.

Проведено экспериментальное исследование низкотемпературных транспортных свойств проволок нитрида титана с шириной, сопоставимой или много большей сверхпроводящей длины когерентности. Показано, что уменьшение ширины проволок не влияет на транспортные свойства при температурах выше критической температуры сверхпроводящего перехода, и электронный транспорт в этом температурном диапазоне определяется квантовыми вкладами в проводимость от слабой локализации и электрон-электронного взаимодействия. Установлено, что уменьшение ширины проволок не приводит к изменению критической температуры сверхпроводящего перехода, однако вызывает полное подавление топологического перехода Березинского-Костерлица–Таулесса. Определено, что пороговое магнитное поле увеличивается при уменьшении ширины проволок.

DOI: 10.7868/S0370274X16230053

Вопрос о влиянии размеров сверхпроводника на его транспортные свойства имеет давнюю историю. Считается, что истинная сверхпроводимость, т.е. полностью бездиссипативное состояние, при отличной от нуля температуре достигается лишь в трехмерных системах, тогда как в квазидвумерных системах истинная сверхпроводимость возникает лишь при нулевой температуре, а квазиодномерные системы вовсе не могут быть сверхпроводящими [1]. Также доказано, что при конечной температуре в квазидвумерных системах возможно не только образование куперовских пар, но и переход в состояние с неизмеримо малой диссипацией, происходящий по механизму Березинского-Костерлица-Таулесса. При этом, сопротивление системы может быть и неизмеримо мало, и неизмеримо велико (пленки InO [2], TiN [3]). Вопрос же о наличии бездиссипативного состояния в квазиодномерных системах остается открытым, поскольку существующие теоретические модели и экспериментальные данные разнятся, указывая как на экспоненциальное уменьшение сопротивления сравнительно толстых проволок, связанное с термически активированным проскальзыванием фаз [4-7], так и на конечное сопротивление даже при T = 0, связанное с квантовым проскальзыванием фаз [8–11]. В этом случае предсказывается смена характера вольтамперных характеристик со степенного на линейный, причем изменение происходит скачком с показателя степени 2 на 1 [12]. Кроме того, для сравнительно тонких проволок может наблюдаться рост сопротивления при уменьшении температуры [13] и возвратная сверхпроводимость в магнитном поле [13, 14].

В данной работе представлены результаты экспериментального исследования низкотемпературных транспортных свойств проволок нитрида титана TiN шириной больше сверхпроводящей длины когерентности. Исходные пленки TiN толщиной 5 нм изготовлены методом атомарно-слоевого осаждения на подложке SiO₂/Si при температуре 400°C. Структурные исследования методом высокоразрешающей электронной микроскопии показывают, что пленки являются поликристаллическими с характерным размером кристаллитов 5 нм. Оценка транспортных параметров пленок в приближении параболического закона дисперсии дает следующие значения: коэффициент диффузии $D = 2.9 \, \text{см}^2/\text{с}$, длина свободного пробега l = 0.3 нм, величина $k_F l = 3$, сверхпроводящая длина когерентности, имеющая смысл характерного размера куперовской пары, $\xi_d(T=0) = 8.2$ нм. Первая группа исследуемых проволок представляет мезаструктуры в виде холловского мостика шириной 5 и 50 мкм с расстоянием между потенциометрическими контактами L = 50 и 450 мкм соответственно. Данные проволоки были изготовлены методом фотолитографии на основе исходной пленки TiN. Отметим, что зависимости сопротивления пленок шириной w = 5 и 50 мкм неразличимы между

 $^{^{1)}\}mathrm{Cm.}$ дополнительные материалы к данной статье на сайте нашего журнала www.jetpletters.ac.ru.

²⁾e-mail: mironov@isp.nsc.ru

собой и далее мы будем говорить только о пленке шириной 50 мкм. Ко второй группе относится проволока шириной w = 100 нм и расстоянием между потенциометрическими контактами L = 300 мкм (см. рис. 1). Данные проволоки изготовлены мето-

Рис. 1. Изображение боковых участков мезаструктуры TiN в электронном микроскопе. Токовые контакты – 1, 6. Потенциометрические контакты – 2, 3, 4, 5, 7, 8, 9, 10. Между контактами 3 и 4, 8 и 9 есть разрезы. Ширина проволоки, представленной на рисунке составляет 100 нм, расстояние между потенциометрическими контактами – 300 мкм

дом электронно-лучевой литографии с последующим плазмохимическим травлением. Эксперименты проводили в криостате растворения ${}^{3}\text{He}/{}^{4}\text{He}$. Магнитное поле направлено перпендикулярно поверхности образца. Измерения выполняли по стандартной четырех-точечной схеме на переменном токе I == 10 пА низкой частоты f = 3.33 Гц.

На рис. 2 представлены результаты исследования температурных зависимостей сопротивления "на квадрат" $R_{sq}(T)$ проволок ТіN шириной w = 0.1и 50 мкм, которые далее будем называть узкой и широкой соответственно. На исследуемых зависимостях отсутствуют какие-либо изломы, что указывает на однородность проволок. Для обеих проволок при уменьшении температуры от комнатной наблюдается логарифмический рост сопротивления $R_{sq}(T)$, далее, при температуре $T \simeq 10 \,\mathrm{K}$ сопротивление достигает максимума и затем убывает. Ранее было показано [15, 16], что широкая проволока, является квазидвумерной по отношению к эффектам сверхпроводимости и электрон-электронного взаимодействия, и все поведение $R_{sa}(T)$ вплоть до $R \simeq 0.1 R_{max}$ полностью описывается теорией квантовых вкладов в проводимость (QC) квазидвумерной сверхпроводящей системы [17-23]. Тот факт, что поведение проволок полностью совпадает вплоть до $R \simeq 0.1 R_{\rm max}$, позволяет нам: 1) утверждать, что в этом диапазоне проволока шириной $w \ge 100$ нм является квазидвумерной; 2) описывать экспериментальную зависимость R(T) узкой проволоки с помощью вышеупомянутой теории квантовых вкладов в проводимость (QC). При этом, в выражении для теоретической зависимости $R_{QC}(T)$ критическая температура сверх-

Fig. 2. (Цветной онлайн) Температурные зависимости сопротивления проволок TiN. Сверхпроводящая длина когерентности составляет $\xi_d \simeq 8.2$ нм. (a) – Экспериментальные данные, отложенные в логарифмическом масштабе по температуре. Символами приведены зависимости для проволока шириной w = 0.1 мкм $(w/\xi_d \simeq 12)$ (ромбы) и шириной w = 50 мкм $(w/\xi_d \simeq$ 600) (кружки́). Сплошная линия – теоретическая зависимость $R_{QC}(T)$ для w = 0.1 мкм, вычисленная в рамках теории квантовых вкладов в проводимость. (b) – Те же данные в логарифмическом масштабе по сопротивлению. (с) – Символами приведена зависимость для проволока шириной w = 0.1 мкм. Сплошная линия – теоретическая зависимость $R_{QC}(T)$. Штриховая линия – теоретическая зависимость $R_{TAPS}(T)$, учитывающая термически активированное проскальзывание фаз (1) – TAPS. Пунктирная линия – теоретическая зависимость $R_{QPS}(T)$, учитывающая квантовое проскальзывание фаз (3) - QPS

проводящего перехода T_c является подгоночным параметром и определяется из сопоставления теоретической $R_{QC}(T)$ и экспериментальной $R_{sq}(T)$ (полный вид выражений, использованных для вычисления теоретической зависимости $R_{QC}(T)$ приведен в дополнительных материалах). Для проволоки ширины $\omega=50~{\rm MKM}-T_c=2.44\pm0.002~{\rm K},$ для $\omega=0.1~{\rm MKM}-T_c=2.42\pm0.002~{\rm K}.$ Таким образом, уменьшение ширины проволоки вплоть до $w=12\xi_d(0)$ не приводит к подавлению $T_c.$

Однако при температурах $T \lesssim T_c$ появляются существенные различия в поведении проволок: сопротивление узкой проволоки убывает медленнее, чем широкой (см. рис. 2b). Такое поведение можно связать с влиянием термически активированного проскальзывания фаз, которое описывают с помощью формулы Аррениуса–Литтла в интервале температур $T = (0.9 \div 1.1)T_c$ [7, 24]:

$$R_{AL}(T) = R_N \exp\left(-\frac{\Delta F(T)}{kT}\right),\tag{1}$$

$$\Delta F(T) \approx 0.83 \frac{L}{\xi_d(0)} \frac{\pi\hbar}{2e^2 R_N} k T_c \left(1 - \frac{T}{T_c}\right)^{3/2}, \quad (2)$$

где подгоночные параметры – R_N – сопротивление проволоки в нормальном состоянии, L – длина проволоки. Наилучшее согласие экспериментальных данных с выражением (1) наблюдается при $R_N = 621 \, \text{кOm}$, что в 4 раза меньше фактического сопротивления в нормальном состоянии (2.5 МОм), и длине проволоки L = 102 мкм, что втрое меньше фактической длины (300 мкм). Более того, сопротивление проволоки шириной w = 100 нм не становится неизмеримо малым при достигнутых в эксперименте температурах (минимальное значение сопротивления – $0.2 \,\mathrm{Om}$ при $T = 0.2 \,\mathrm{K}$), тогда как сопротивление широкой проволоки экспоненциально убывает с уменьшением температуры. Такое поведение узкой проволоки может указывать как на подавление перехода Березинского-Костерлица-Таулесса за счет размерных эффектов при уменьшении ширины проволоки, так и на проявление квантового проскальзывания фазы [12, 10]. Использование формулы:

$$R_{QPS} = B \frac{\pi\hbar}{2e^2} S_{QPS} \frac{L}{\xi(T)} \exp(-S_{QPS}), \qquad (3)$$

где

$$S_{QPS} = A \frac{\pi \hbar}{2e^2 R_N} \frac{L}{\xi(T)},\tag{4}$$

 R_N , L – подгоночные параметры, A и B – константы, позволяет описать поведение R(T). Однако, наилучшее согласие экспериментальных данных и выражения (3) достигается при $R_N = 621$ кОм, L = 102 мкм, A = 0.6 и экстремально малом значении B = 0.0022. Отметим, что данный эффект проявляется в проволоке, ширина которой на порядок превышающей длину когерентности $\xi_d(0) = 8.2$ нм, в то время как для реализации механизма квантового проскальзывания фаз требуется сравнимость значений ширины проволоки и длины когерентности. Таким образом, выражения, описывающие проявления термически активированного и квантового проскальзываний фаз, позволяют описать температурную зависимость сопротивления. Однако необходимость использования неправдоподобных подгоночных параметров ставит под вопрос правомерность их использования.

Для определения доминирующего вклада в ненулево
е сопротивление узкой проволоки при $T\,<\,T_c$

были измерены вольтамперные характеристики обеих проволок, представленные на рис. За. В случае широкой проволоки наблюдается гигантский гистерезис по току – пороговый ток, разрушающий сверхпроводимость при увеличении тока от 0 j_T^+ , и более чем на порядок превосходит пороговый ток при уменьшении тока к 0 j_T^- . В случае узкой проволоки вольтамперная характеристика при малых плотностях тока является линейной при любых, достигнутых в эксперименте, температурах. Тем не менее данное состояние скачкообразно разрушается пороговым током. Причем, наблюдается и слабый гистерезис при смене направления изменения тока, однако он гораздо менее выражен, чем для широкой проволоки. При этом плотность "горячего" порогового тока j_T^- узкой проволоки превышает плотность широкой проволоки (см. рис. 3b). Кроме того, в окрестности порогового тока узкой проволоки вольтамперная зависимость имеет ступенчатый вид, что может быть связано с возникновением новых центров проскальзывания фазы [25]. В то же время, аналогичные ступеньки наблюдаются в одномерных цепочках джозефсоновских переходов [26, 27]. Отметим, что увеличение беспорядка в системе приводит к формированию самоорганизованных сверхпроводящих островков за счет усиления флуктуаций сверхпроводящей щели [28]. Поскольку исходная пленка TiN является сильно разупорядоченной $(k_F l = 3)$, в ней может возникнуть подобная островковая система. При этом, остаточное сопротивление проволоки будет определяться металлической областью между островками и обеспечивать линейную зависимость напряжения от тока при любых температурах.

Рассмотрим эволюцию магнитополевых зависимостей сопротивления (рис. 4). При низких температурах $T < 1 \,\mathrm{K}$ при увеличении магнитного поля наблюдается положительное магнитосопротивление dR/dB > 0, затем сопротивление выходит на насыщение dR/dB < 0 (см. рис. 4a). Отметим, что при T < 1 K для каждой проволоки все зависимости магнитосопротивления пересекаются в одной точке. При этом, максимальное сопротивление $R_{\max}(B)$ и сопротивление в точке пересечения зависимостей R_c узкой проволоки превышает $R_{\max}(B)$ и R_c широкой на 7 %. Значит, уменьшение ширины проволоки приводит к усилению локализационных вкладов в проводимость, обусловленных магнитным полем. В то же время, сопротивление узкой проволоки возрастает быстрее в интервале магнитных полей B = 0 - 2 Тл (см. рис. 4b) и лишь в интервале B = 2 - 3 Тл скорость нарастания сопротивления широкой проволоки становится больше, чем для узкой. В итоге значение магнитного поля B_{0.5R_N}, при котором сопротивление дости-

Рис. 3. (Цветной онлайн) (a) – Вольтамперные зависимости проволок ТiN шириной $\omega = 100$ нм (пунктирная линия) и $\omega = 50$ мкм (штриховая линия), измеренные при температуре T = 200 мК. Стрелками показано направление изменения тока при увеличении от нуля (j^+) и при уменьшении до нуля (j^-) . (b) – Участок вольтамперной характеристики узкой проволоки в окрестности порогового тока. (c) – Температурные зависимости порогового тока, определенного по максимальному значению дифференциального сопротивления проволок TiN шириной 100 нм (\blacksquare) и 50 мкм (\bullet). Закрашенные символы соответствуют пороговому току при увеличении тока от нуля j_T^+ , пустые – при уменьшении к нулю j_T^-

Рис. 4. (Цветной онлайн) Магнитополевые зависимости сопротивления проволок TiN шириной 100 нм (пунктирная линия) и 50 мкм (штриховая линия) в линейном (а) и логарифмическом по сопротивлению (b) масштабах для температур T = 0.2, 0.4, 0.6 и 0.8 К. Магнитополевые зависимости сопротивления проволоки шириной 50 мкм (c) и 100 нм (d) в температурном диапазоне T = 1-2.3 К в логарифмическим масштабе по сопротивлению. Стрелками выделена область отрицательного магнитосопротивления

гает половины сопротивления в нормальном состоянии (характерная точка по которой принято определять значение верхнего критического поля) и значение магнитного поля B_c , соответствующего точке пересечения низкотемпературных зависимостей R(B), в случае узкой проволоки оказываются выше, чем у широкой. Подобное поведение можно трактовать как усиление сверхпроводящих свойств и, соответственно, увеличение верхнего критического поля B_{c2} при уменьшении ширины проволоки. С другой стороны, увеличение характерного магнитного поля B_c может быть связано с доминированием поверхностной проводимости в более узкой проволоке и, фактически, с наблюдением третьего критического поля B_{c3} . Как показано в работе [14], доминирующая роль поверхностной сверхпроводимости приводит в возникновению явления возвратной сверхпроводимости в магнитном поле. Действительно, рассмотрим магнитополевые зависимости сопротивления проволок в температурном интервале $T = 1.6 - 2.3 \,\mathrm{K}$ (см. рис. 4с, d). Зависимости R(B) широкой проволоки растут с ростом магнитного поля, в то время как зависимости R(B) узкой проволоки немонотонны. В температурном диапазоне $T = 1.1 - 1.9 \,\mathrm{K}$ при увеличении магнитного поля при B > 0.2 Тл сопротивление узкой проволоки экспоненциально растет $R \propto \exp(B/B^*)$, где $B^* = kT[32\pi\lambda_d^2/(\Phi_0 w^2 \xi_d)] \simeq 0.035$ Тл. Затем при $B_v = 1.61 (\Phi_0/w^2) \simeq 0.35$ Тл наблюдается область отрицательного магнитосопротивления, и снова – рост. Подобное поведение обусловлено движением и упорядочением вихрей, индуцированных магнитным полем [14].

Подведем краткий итог. Уменьшение ширины сверхпроводящих проволок вплоть до $w = 12\xi_d(0)$) не влияет на транспортные свойства при температурах выше критической T_c , и электронный транспорт в этом температурном диапазоне определяется квантовыми вкладами в проводимость квазидвумерных систем. Установлено, что уменьшение ширины проволок приводит к уширению сверхпроводящего перехода и подавлению температуры топологического перехода Березинского-Костерлица-Таулесса. При этом, ненулевое сопротивление при температурах меньше Т_с узких проволок, по-видимому, связано с образованием самоорганизованной островковой структуры. Показано, что доминирующую роль в магнитотранспортных свойствах узких проволок играет поверхностная сверхпроводимость, что приводит к увеличению порогового магнитного поля и возникновению возвратной сверхпроводимости в магнитном поле.

Авторы благодарят Т.И.Батурину (ИФП СО РАН, Россия) и В.М.Винокура (ANL, США) за плодотворные дискуссии; М.Р.Бакланова и А.Сатта (IMEC, Бельгия) за предоставление пленок TiN.

Исследования низкотемпературного транспорта выполнены при финансовой поддержке РФФИ (грант # 16-02-00803-а), проволоки ТiN изготовлены при финансовой поддержке Российского научного фонда (проект # 14-22-00143).

- J. M. Kosterlitz, J. Phys. C: Solid State Phys. 7, 1046 (1974).
- M. Ovadia, D. Kalok, I. Tamir, S. Mitra, B. Sacepe, and D. Shahar, Sci. Rep. 5, 13503 (2016).
- T.I. Baturina, A.Yu. Mironov, V.M. Vinokur, M.R. Baklanov, and C. Strunk, Phys. Rev. Lett. 99, 257003 (2007).

- J.S. Langer and V. Ambegaokar, Phys. Rev. 164, 498 (1967).
- D.E. McCumber and B.I. Halperin, Phys. Rev. B 1 1054 (1970).
- R. S. Newbower, M. R. Beasley, and M. Tinkham, Phys. Rev. B 5, 864 (1972).
- M.-H. Bae, R. C. Dinsmore, T. Aref, M. Brenner, and A. Bezryadin, Nano Lett. 9, 1889 (2009).
- F. Sharie, A.V. Herzog, and R.C. Dynes, Phys. Rev. Lett. **71** 428 (1993).
- A. D. Zaikin, D. S. Golubev, A. van Otterlo, and G. T. Zimanyi, Phys. Rev. Lett. 78, 1552 (1997).
- D. S. Golubev and A. D. Zaikin, Phys. Rev. B 64, 014504 (2001).
- J.S. Lehtinen, K. Zakharov, and K.Yu. Arutyunov, Phys. Rev. Lett. **109**, 187001 (2012).
- А. Д. Заикин, Д. С. Голубев, А. ван Оттерло, Г. Т. Зимани, УФН 168(2), 244 (1998).
- P. Xiong, A.V. Herzog, and R.C. Dynes, Phys. Rev. Lett. 78, 927 (1997).
- R. Cordoba, T.I. Baturina, J. Sese, A. Yu Mironov, J. M. De Teresa, M. R. Ibarra, D. A. Nasimov, A. K. Gutakovskii, A. V. Latyshev, I. Guillamon, H. Suderow, S. Vieira, M. R. Baklanov, J. J. Palacios, and V. M. Vinokur, Nature Comm. 4, 1437 (2012).
- T. I. Baturina, S. V. Postolova, A. Yu. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, EPL 97, 17012 (2012).
- S.V. Postolova, A.Yu. Mironov, and T.I. Baturina, JETP Lett. **100**, 635 (2015).
- B. L. Altshuler and A. G. Aronov, *Electron-Electron Interactions in Disordered Systems*, Ed. by A. L. Efros and M. Pollak, North-Holland, Amsterdam (1985).
- Б. Л. Альтшулер, А.А. Варламов, М.Ю. Рейзер, ЖЭТФ 84, 2280 (1983).
- S. Hikami, A.I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).
- 20. Л.Г. Асламазов, А.И. Ларкин, ФТТ **10**(4), 1104 (1968).
- 21. K. Maki, Prog. Theor. Phys. **39**(4), 897 (1968).
- 22. R.S. Thompson, Phys. Rev. B 1, 327 (1970).
- J. M. B. Lopes dos Santos and E. Abrahams, Phys. Rev. B **31**, 172 (1985).
- X. D. A. Baumans, D. Cerbu, O.-A. Adami, V. S. Zharinov, N. Verellen, G. Papari, J. E. Scheerder, G. Zhang, V. V. Moshchalkov, A. V. Silhanek, and J. Van de Vondel, Nat. Comm. 7, 10560 (2016).
- A. Bezryadin, A. Bollinger, D. Hopkins, M. Murphey, M. Remeika, and A. Rogachev, Dekker Encyclopedia of Nanoscience and Nanotechnology 5, 3761 (2004).
- Yu. M. Shukrinov, F. Mahfouzi, and M. Suzuki, Phys. Rev. B 78, 134521 (2008).
- 27. Ю.М. Шукринов, И.Р. Рахмонов, ЖЭТФ **142**, 323 (2012).
- A. I. Larkin and Yu. N. Ovchinnikov, Sov. Phys. JETP 34, 1144 (1972).