Эффекты старения в неравновесном поведении мультислойных магнитных структур

В. В. Прудников¹⁾, П. В. Прудников, А. Н. Пуртов, М. В. Мамонова Омский государственный университет им. Ф.М. Достоевского, 644077 Омск, Россия

> Поступила в редакцию 22 августа 2016 г. После переработки 24 октября 2016 г.

Осуществлено численное исследование методами Монте-Карло неравновесного поведения магнитных сверхструктур, состоящих из чередующихся магнитных и немагнитных слоев наномасштабной толщины. Анализ рассчитанной двухвременной зависимости автокорреляционной функции и "шахматной" намагниченности структуры при эволюции из различных начальных состояний позволил выявить эффекты старения, характеризующиеся замедлением корреляционных и релаксационных свойств системы с ростом времени ожидания. Показано, что в отличие от объемных магнитных систем эффекты старения возникают в магнитных сверхструктурах не только вблизи критической температуры T_c ферромагнитного упорядочения в пленках, но и в широком температурном интервале с $T \leq T_c$.

DOI: 10.7868/S0370274X16230077

Исследование макроскопических статистических систем, характеризующихся медленной динамикой [1, 2], а также изучение свойств ультратонких магнитных пленок и магнитных сверхструктур на их основе [3] вызывает в настоящее время значительный интерес как с теоретической, так и с экспериментальной точек зрения. При медленной эволюции систем из неравновесного начального состояния в них наблюдаются свойства старения и нарушение флуктуационно-диссипативной теоремы. Примерами подобных систем с медленной динамикой и эффектами старения являются комплексные неупорядоченные системы: дипольные, металлические и спиновые стекла [4, 5]. Однако подобные особенности неравновесного поведения, как показали различные исследования [6, 7], могут наблюдаться и в более простых системах, испытывающих фазовые переходы второго рода. Это обусловлено тем, что их поведение вблизи критических температур характеризуется аномально большими временами релаксации. Известно, что в окрестности температуры Т_с фазового перехода второго рода время релаксации системы является расходящейся величиной $t_{\rm rel} \sim |T-T_c|^{-z\nu},$ где z и ν – динамический критический индекс и индекс корреляционной длины соответственно, вследствие чего статистическая система в критической точке Т_с не достигает равновесия в течение всего процесса релаксации.

Эффекты старения проявляются на этапе $t \ll t_{\rm rel}$ и выражаются, например, в осуществлении двухвременной зависимости корреляционной функции

$$C(t, t_w) =$$

$$= \frac{1}{V} \int d^d x \left[\langle S(x, t) S(0, t_w) \rangle - \langle S(x, t) \rangle \langle S(0, t_w) \rangle \right] (1)$$

от времени ожидания t_w и времени наблюдения $t-t_w$. Время ожидания характеризует время, прошедшее с момента приготовления образца до начала измерения его характеристик. В течение $t-t_w$, $t_w \ll t_{\rm rel}$ во временном поведении системы проявляется влияние начальных состояний системы.

Является важным, что выявленные к настоящему времени особенности неравновесной критической динамики могут служить основой для понимания и адекватной интерпретации экспериментальных данных, полученных для мультислойных магнитных структур на основе Fe/Cr [8] и Co/Cr [9]. Так, в работе [8] было выявлено неэргодическое поведение мультислойной структуры Fe/Cr на основе периодического сочетания ультратонких ферромагнитных пленок железа с немагнитными пленками хрома с зависимостью намагниченности образца от его магнитной предыстории. В другой статье [9], исследования релаксации намагниченности выявили в магнитной сверхструктуре на основе Со/Сг эффекты магнитного старения. Наномасштабная периодичность создает в этих магнитных мультислойных структурах мезоскопические эффекты пространственной спиновой корреляции с медленной релаксационной динами-

¹⁾e-mail: prudnikv@univer.omsk.su

кой намагниченности при замораживании системы в неравновесном состоянии. По сравнению с объемными магнитными системами, в которых медленная динамика и эффекты старения проявляются вблизи критической точки, магнитные сверхструктуры с наномасштабной периодичностью дают возможность увеличить время релаксации за счет эффектов, связанных с увеличенной в этих структурах характеристической корреляционной длиной спин-спиновых корреляций. По этой причине эффекты старения и неэргодичности могут наблюдаться в мультислойных магнитных структурах в более широком температурном интервале по сравнению с объемными магнитными системами.

В данной работе рассматривается задача проведения численного Монте-Карло-исследования особенностей неравновесного поведения мультислойной магнитной структуры (рис. 1) из ферромагнитных

Рис. 1. Модель мультислойной структуры, состоящей из двух ферромагнитных пленок, разделенных пленкой немагнитного металла; *L* и *N* – линейные размеры пленок, *J*₁, *J*₂ – обменные интегралы

пленок, разделенных слоем немагнитного металла. Магнитные пленки характеризуются линейными размерами $L \times L \times N$ и наложенными периодическими граничными условиями в плоскости пленки. Рассматривалась структура из магнитных пленок с толщинами N = 3 (в единицах моноатомных слоев). Значение обменного интеграла J_1 , определяющего взаимодействие соседних спинов внутри ферромагнитной пленки, бралось $J_1/k_BT = 1$ (k_B – коэффициент Больцмана), а для взаимодействия между пленками $J_2 = -0.3J_1$. Отрицательность J_2 отражает тот факт, что в мультислойных структурах с эффектом гигантского магнитосопротивления толщина немагнитной прослойки подбира-

ется так, чтобы дальнодействующее и осциллирующее межслоевое обменное РККИ-взаимодействие между спинами ферромагнитных слоев носило эффективный антиферромагнитный характер [10]. За счет этого взаимодействия намагниченности соседних ферромагнитных слоев ориентируются противоположно друг другу. Таким образом, рассматриваемая структура моделирует искусственно создаваемые мультислойные структуры, характеризующиеся проявлением эффектов гигантского магнитосопротивления [10–12].

Магнитные свойства ультратонких пленок на основе Fe, Co и Ni при контакте с подложкой из немагнитного металла наиболее правильно описываются анизотропной моделью Гейзенберга [13, 14], задаваемой гамильтонианом

$$H = -\sum_{\langle i,j \rangle} J_{ij} [\mathbf{S}_i \mathbf{S}_j - \Delta(N) S_i^z S_j^z] - h \sum_i S_i^x, \quad (2)$$

где $\mathbf{S}_i = (S_i^x, S_i^y, S_i^z)$ – трехмерный единичный вектор в узле i; $\Delta = 0.7$ – параметр анизотропии для ферромагнитных пленок Со с толщиной N = 3 монослоя; h – внешнее магнитное поле. Вид и параметры гамильтониана выбраны таким образом, чтобы соответствовать мультислойной структуре Co(0.6 нм)/Cr/Co(0.6 нм), в которой ультратонкие пленки Со характеризуются при температурах ниже критической T_c появлением спонтанной намагниченности **m**, лежащей в XY-плоскости пленки [9].

На первом этапе исследований проводился расчет равновесных характеристик мультислойной структуры с целью определения температуры T_c ферромагнитного фазового перехода в магнитных пленках и T_N , характеризующей реализацию антиферромагнитной конфигурации намагниченностей пленок в структуре за счет отрицательности J₂. Для более точного определения критических температур рассматривались структуры с различными линейными размерами пленок L = 16, 24, 32, 64. Рассчитывались такие характеристики как "шахматная" намагниченность $\mathbf{m}_{\mathrm{stg}} = \mathbf{m}_1 - \mathbf{m}_2$, где \mathbf{m}_1 , \mathbf{m}_2 – намагниченности пленок (рис. 2), "шахматная" восприимчивость $\chi_{\text{stg}} = [\langle m_{\text{stg}}^2 \rangle - \langle m_{\text{stg}} \rangle^2]/TN_s$, теплоемкость $C_h = [\langle E^2 \rangle - \langle E \rangle^2]/(k_B T)^2 N_s$ (рис. 3) и кумулянт Биндера $U_4 = (3 - \langle m^4 \rangle / \langle m^2 \rangle^2)/2$, где N_s – число спинов в пленке.

Анализ температурной зависимости данных термодинамических величин для пленок различных линейных размеров L позволяет однозначно охарактеризовать тип фазовых превращений в мультислойной структуре и определить критические температуры T_c и T_N [15, 16]. Для придания получен-

Рис. 2. Температурное поведение "шахматной" намагниченности $m_{\rm stg}(T,L)$

Рис. 3. Температурное поведение теплоемкости $C_h = [\langle E^2 \rangle - \langle E \rangle^2]/(k_B T)^2 N_s$

ным температурным зависимостям данных характеристик большего физического соответствия с системой Co/Cr/Co [9] шкала температур была задана нами через интеграл обменного взаимодействия $J_1 = 4.4 \cdot 10^{-14}$ эрг, соответствующего кобальту. Так, представленная на рис. 4 температурная зависимость теплоемкости с двумя характерными пиками для фазовых переходов второго рода позволяет определить соответствующие критические температуры $T_N \simeq 60 \, {\rm K} \, \left(k_B T_N / J_1 \; = \; 0.19(3)
ight)$ и $T_c \; \simeq \; 249.6 \, {\rm K}$ $(k_B T_c/J_1 = 0.78(3))$. Другие измеренные характеристики подтверждают найденное значение Т_c. Отметим, что данные критические температуры для модельной мультислойной структуры находятся в хорошем соответствии со значениями $T_N = 53 \,\mathrm{K}$ и $T_{c} = 225 \, \text{K}$, экспериментально измеренными в работе [9] для структуры [Co(0.6 нм)/Cr(0.78 нм)]₂₀. Анализ рассчитанной температурной зависимости "шахматной" намагниченности $m_{\rm stg}(T,L)$ и кумулянта Биндера $U_4(T, L)$ для структуры с N = 3 вблизи T_c позволил определить в соответствии с методикой работы [13] эффективные критические индексы $\beta = 0.25(3)$ для намагниченности и $\nu = 0.80(4)$ для корреляционной длины. Полученное значение критического индекса β указывает на принадлежность критического поведения пленки кобальта с толщиной N = 3 монослоя на хроме к классу универсальности двумерной ХУ-модели с влиянием конечномерных эффектов, характеризующимся значением $\beta \simeq$ $\simeq 0.23$ [3, 17]. Однако отметим, что в отличие от двумерной ХҮ-модели, в которой не возникает дальнего магнитного порядка при конечных температурах, а фазовый переход второго рода Березинского-Костерлица–Таулесса при температуре $T_{\rm BKT}$ [18, 19] имеет топологический характер и связан с диссоциацией связанных пар вихрь-антивихрь в точке перехода, в наших анизотропных гейзенберговских пленках кобальта при толщине N=3 возникает типичный ферромагнитный фазовый переход с усилением особенностей магнитных характеристик при $L \to \infty$, а не их сглаживанием как в случае с двумерной XYмоделью. На это указывают и результаты экспериментальных исследований поведения ультратонких пленок никеля и кобальта на медной подложке с толщинами $N = 1 \div 16$ монослоев, демонстрирующих размерные изменения критического поведения от двумерного XY-подобного с $\beta \simeq 0.23$ к трехмерному гейзенберговскому с $\beta \simeq 0.37$ [3, 20].

На следующем этапе исследований было проведено изучение неравновесного поведения мультислойной структуры. Был осуществлен расчет временной зависимости намагниченности ферромагнитной пленки в структуре

$$\mathbf{m}(t) = \left\langle \frac{1}{NL^2} \sum_{i=1}^{NL^2} \mathbf{S}_i(t) \right\rangle, \qquad (3)$$

и двухвременной зависимости автокорреляционной функции

$$C(t,t_w) = \left\langle \frac{1}{NL^2} \sum_{i=1}^{NL^2} \mathbf{S}_i(t) \mathbf{S}_i(t_w) \right\rangle - \mathbf{m}(t) \mathbf{m}(t_w).$$
(4)

Рассмотрены случаи эволюции системы из высокотемпературного начального состояния, созданного при $T_0 \gg T_c$ с приведенной "шахматной" намагниченностью $m_0^{\text{stg}} = 0.05$, и низкотемпературного начального состояния с $m_0^{\text{stg}} = 1$. Неравновесное поведение реализовывалось переводом системы из данных начальных состояний в состояния при температурах теплового резервуара T_s , равных критической температуре $T_c = 249.6$ К, и температурам $T_s = 96$ К и

Рис. 4. (Цветной онлайн) Зависимость автокорреляционной функции $C(t,t_w)$ от времени наблюдения $(t-t_w)$ при эволюции мультислойной структуры из различных начальных состояний с $m_0^{\text{stg}} = 0$ и $m_0^{\text{stg}} = 1$ (a) и ее скейлинговой функции $F(t/t_w) = t_w^b C(t,t_w)$ от $(t-t_w)/t_w$ при $m_0^{\text{stg}} = 0$ (b) для различных температур теплового резервуара $T_s = 96 \text{ K}$, 160 К и $T_s = T_c = 249.6 \text{ K}$

160 К, находящимся в интервале $T_N < T_s < T_c$. Времена релаксации моделируемой системы существенно зависят от ее линейного размера $t_{\rm rel} \sim L^z$ с дина-

мическим критическим индексом $z \ge 2$. Поэтому при исследовании неравновесного поведения, реализующемся на временах $t \ll t_{\rm rel}$, желательно выбирать до-

статочно большие размеры L моделируемых систем. При расчетах неравновесного поведения автокорреляционной функции $C(t, t_w)$ рассматривались структуры с линейными размерами пленки L = 128, что позволяет анализировать неравновесные характеристики системы на временах до 10000 шагов Монте-Карло на спин (MCS/s). Для исследования двухвременной зависимости $C(t, t_w)$ использовались времена ожидания $t_w = 10,\,50,\,100$ и 1000 MCS/s. Усреднение характеристик проводилось по 1000 прогонок. Графики зависимости автокорреляционной функции от времени наблюдения $t-t_w$, представленные на рис. 4, демонстрируют наличие в системе эффектов старения, т.е. зависимость временного спадания корреляционных эффектов от времени ожидания t_w . При этом эффекты старения возникают в мультислойных структурах не только при $T_s = T_c$, как в объемных системах, но и при температурах $T_s < T_c$. Видно, что при эволюции как из низкотемпературного, так и высокотемпературного начальных состояний с увеличением времени ожидания t_w наблюдается соответствующее понятию старения замедление корреляции в системе. Отметим также, что времена корреляции при эволюции системы из высокотемпературного начального состояния превосходят времена корреляции при эволюции из низкотемпературного начального состояния на один-два порядка для одних и тех же значений t_w .

В режиме старения при $t - t_w \sim t_w \gg 1$ двухвременная зависимость автокорреляционной функции характеризуется скейлинговой формой [7]:

$$C(t, t_w) \sim t_w^{-b} F_C(t/t_w), \tag{5}$$

где показатель b при температуре теплового резервуара $T_s = T_c$ выражается через критические индексы $b = 2\beta/z\nu$. Скейлинговая функция $F_C(t/t_w)$ является однородной функцией своего аргумента t/t_w и характеризуются на долговременном этапе эволюции с $(t - t_w) \gg t_w \gg 1$ степенным законом затухания

$$F_C(t/t_w) \sim (t/t_w)^{-c_a},\tag{6}$$

показатель c_a при $T_s = T_c$ определяется выражениями $c_a = d/z - \theta'$ в случае эволюции из высокотемпературного начального состояния и $c_a = 1 + d/z + \beta/z\nu$ при эволюции из низкотемпературного начального состояния. При температурах теплового резервуара $T_s \neq T_c$ показатели *b* и c_a в выражениях (5), (6) уже не связаны с критическими индексами рассматриваемой системы.

С целью проверки справедливости скейлинговой формы (5) для полученных нами данных для ав-

Письма в ЖЭТФ том 104 вып. 11-12 2016

токорреляционной функции были построены зависимости $t_w^b C(t, t_w) = F_C(t/t_w)$ от t/t_w при подборе значений показателя b таким образом, чтобы данные для различных t_w ложились по возможности на одну кривую при $t/t_w \gg 1$. На примере автокорреляционной функции, полученной при эволюции из высокотемпературного начального состояния, видно (см рис. 4) осуществление "коллапса" данных для $t_w^b C(t, t_w)$ и различных t_w на универсальной кривой, соответствующей скейлинговой функции $F_C(t/t_w)$ как при $T_s = T_c = 249.6 \,\mathrm{K}$ при значении показателя $b_c = 2\beta/z\nu = 0.318(8)$, так и при $T_s = 96 \,\mathrm{K}$ с показателем b = 0.04(1), при $T_s = 160 \,\mathrm{K}$ с показателем b = 0.055(10). Отметим, что полученное значение показателя $b_c = 2\beta/z\nu = 0.318(8)$ находится в хорошем согласии с полученными значениями критических индексов $\beta = 0.25(3)$ и $\nu = 0.80(4)$ при использовании для данной структуры значения динамического критического индекса z = 2 как для системы с эффективным критическим поведением, соответствующим двумерной ХУ-модели [21].

Проведем сопоставление полученных двухвременных зависимостей автокорреляционной функции $C(t, t_w)$ для мультислойной структуры с поведением $C(t, t_w)$ для двумерной XY-модели. В соответствии с теорией динамического скейлинга $C(t, t_w)$ для двумерной XY-модели может быть представлена в следующей форме [22, 23]:

$$C(t, t_w) = \frac{1}{(t - t_w)^{\eta(T)/z}} f_C \left[\frac{\xi(t)}{\xi(t_w)} \right],$$
 (7)

где скейлинговая функция f_C является конечной при $t_w \to 0, \eta(T)$ – критический индекс Фишера, определяющий степенной характер пространственной зависимости корреляционной функции, z = 2 – динамический критический индекс, $\xi(t)$ – корреляционная длина. Отметим, что $\xi(t)$ имеет различный характер временной зависимости для различных начальных состояний: $\xi(t) \sim (t/\ln t)^{1/z}$ для $T_0 \gg T_{\rm BKT}$ и $\xi(t) \sim t^{1/z}$ для $T_0 = 0$. Возникающие в $\xi(t)$ при эволюции из высокотемпературного начального состояния логарифмические поправочные множители отражают влияние эффектов взаимодействия вихрей [23]. При температуре фазового перехода Березинского-Костерлица–Таулесса $T_{\rm BKT}$ показатель $\eta = 1/4$ [18], а в низкотемпературной фазе зависимость $\eta(T)$ определена численно методами Монте-Карло в работах [24, 25].

Временная зависимость автокорреляционной функции на раннем квазиравновесном этапе эволюции с $(t - t_w) \ll t_w$ в соответствии с соотношением (7) характеризуется степенной зависимостью

Рис. 5. Зависимость автокорреляционной функции C от времени наблюдения $(t - t_w)$ при эволюции двумерной XYмодели из различных начальных состояний с $T_0 \gg T_{\rm BKT}$ и $T_0 = 0$ (а) и ее скейлинговой функции $f_C[\xi(t)/\xi(t_w)] = t_w^{\eta(T)/2}C(t,t_w)$ от $[\xi(t)/\xi(t_w)]^{1/2}$ при $T_0 \gg T_{\rm BKT}$ и $T_0 = 0$ (b) для различных температур теплового резервуара $T_s = 0.3J_1/k_B$ и $T_s = T_{\rm BKT} = 0.89J_1/k_B$

 $C(t,t_w) \sim (t-t_w)^{-\eta(T)/2}$. Поэтому предсказывается, что при $T_{\rm BKT}$ временное спадание автокорреляционной функции окажется для двумерной XY-модели медленнее чем для нашей мультислойной структуры с N = 3 при критической температуре T_c $(b_c = 2\beta/z\nu = 0.318(8) > \eta(T_{\rm BKT})/2 = 0.125)$. На долговременном этапе эволюции из высокотемпературного начального состояния с $(t - t_w) \gg t_w$ исследования выявили [25, 26], что скейлинговая функция в (7) характеризуется степенной зависи-

Рис. 6. Релаксация "шахматной" намагниченности $m_{stg}(t, t_w)$ из низкотемпературного начального состояния с $m_0^{stg} = 1$ (а) и зависимость ее скейлинговой функции $t_w^a m_{stg}(t, t_w)$ от $(t - t_w)/t_w$ (b) для различных температур теплового резервуара $T_s = 96$ K, 160 K и $T_s = T_c = 249.6$ K

мостью $f_C(x) \sim x^{-\lambda(T)}$ со значениями показателя $\lambda(T)$ [25], значительно превышающими значения показателя $\eta(T)/2$ для раннего этапа эволюции. В результате, возникает сильная двухвременная

зависимость $C(t, t_w)$ с ярко выраженными эффектами старения, когда на сильный степенной спад автокорреляционной функции как функции времени наблюдения накладывается эффект замедления

корреляции с ростом времени ожидания t_w. Данные предсказания подтверждаются результатами проведенных численных исследований (рис. 5а) поведения $C(t, t_w)$ для двумерной XY-модели с линейными размерами L = 128 при температурах $T_{\rm BKT} = 0.89 J_1 / k_B$ [27], $T = 0.5J_1/k_B$ и $T = 0.3J_1/k_B$ с рассмотрением эволюции как из высокотемпературного, так и низкотемпературного начальных состояний. На рис. 5b представлены графики, подтверждающие скейлинговую форму (7) для автокорреляционной функции двумерной ХҮ-модели, с коллапсом данных для различных времен ожидания t_w на универсальных кривых, соответствующих рассмотренным температурам. Сопоставление графиков на рис. 4a, b и рис. 5a, b показывает, что возникающие различия в поведении автокорреляционной функции для двумерной ХҮ-модели и мультислойной структуры связаны с эффектами более сильной спин-спиновой корреляции в ферромагнитных пленках и влиянием межслоевой обменной связи между пленками в структуре.

Наряду с исследованием эффектов старения в поведении автокорреляционной функции было проведено моделирование условий, при которых в работе [9] для структуры Co/Cr были экспериментально выявлены эффекты старения в релаксационных свойствах намагниченности. Для этого при процессе релаксации "шахматной" намагниченности структуры из низкотемпературного начального состояния при температуре теплового резервуара T_s в момент времени t_w включалось на короткий интервал времени достаточно сильное магнитное поле в плоскости пленки (в нашем случае $h = 100J_1$). После выключения поля происходил изотермический процесс релаксации "шахматной" намагниченности и медленного ее возвращения к релаксационной кривой, характеризующей неравновесное поведение структуры без внешнего магнитного поля (случай с h = 0). Для различных времен ожидания $t_w = 10, 50, 100$ и 1000 MCS/s и различных температур замораживания $T_s~=~96\,{\rm K},~160\,{\rm K}$ и $T_s~=~T_c~=~249.6\,{\rm K}$ были проанализированы участки релаксации намагниченности от момента выключения магнитного поля до момента, при котором намагниченность возвращалась к своему невозмущенному значению при h = 0 (рис. 6). На рисунке наглядно видно проявление эффектов старения в релаксации намагниченности пленок мультислойной структуры, т.е. замедление релаксации с увеличением времени ожидания t_w .

Теория неравновесных процессов предсказывает для поведения намагниченности (в нашем случае

"шахматной" намагниченности) следующую скейлинговую зависимость:

$$m_{\rm stg}(t, t_w) \sim t_w^{-a} F_m(t/t_w), \tag{8}$$

где показатель а при температуре замораживания $T_s = T_c$ выражается через критические индексы a = $= \beta/z\nu$. Построенные нами зависимости $t_w^a m_{stq}(t, t_w)$ от t/t_w (см. рис. 6) позволили подтвердить скейлинговую форму (8) с выделением функции $F_m(t/t_w)$, не зависящей от t_w , при соответствующем подборе показателя а для каждой используемой температуры теплового резервуара T_s. Из рис. 6 видно, что "коллапс" данных на единой для всех t_w кривой осуществляется не только при критической температуре с $T_s = T_c$, но и при $T_s < T_c$. Были получены следующие значения показателя $a: a_c = \beta/z\nu = 0.159(5)$ при $T_s = T_c = 249.6 \,\mathrm{K}; a = 0.022(7)$ при $T_s = 96 \,\mathrm{K}$ и a = 0.025(7) при $T_s = 160$ К. Сопоставление полученных значений показателей а и b показывает, что в пределах погрешностей b = 2a и согласуется с соотношением этих показателей при критической температуре. Отметим также, что выявленные эффекты старения в релаксационном поведении намагниченности для нашей модельной мультислойной структуры находятся в хорошем согласии с экспериментально выявленными эффектами старения в структуре Co/Cr [9].

Таким образом, проведенные исследования и расчеты двухвременных зависимостей автокорреляционной функции и "шахматной" намагниченности методами Монте-Карло позволили выявить осуществление эффектов старения в мультислойных магнитных структурах не только при их неравновесном критическом поведении при $T_s = T_c$, но и в широком диапазоне температур теплового резервуара с $T_s < T_c$. Поэтому существование данных неравновесных эффектов несомненно надо учитывать при практическом использовании мультислойных магнитных структур в качестве элементов приборов спинтроники с эффектом гигантского магнитного сопротивления.

Работа выполнена при поддержке Российского научного фонда проект # 14-12-00562. Для проведения расчетов были использованы ресурсы суперкомпьютерного комплекса МГУ им. М.В. Ломоносова и межведомственного суперкомпьютерного центра РАН.

L.F. Cugliandolo, Slow relaxation and nonequilibrium dynamics in condensed matter, Les Houches, Ecole d'Ete de Physique Theorique, ed. by J.-L. Barrat et al., Springer, Berlin (2003), v. 77, p. 371.

- M. Henkel and M. Pleimling, Non-Equilibrium Phase Transitions, v. 2: Ageing and Dynamical Scaling far from Equilibrium (Theoretical and Mathematical Physics), Springer, Heidelberg (2010), p. 544.
- C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, Rep. Prog. Phys. 71, 056501 (2008).
- 4. L. Berthier and J. Kurchan, Nature Phys. 9, 310 (2013).
- J.-P. Bouchaud, L.F. Cugliandolo, J. Kurchan, and M. Mezard, Directions in Condensed Matter Physics, in Spin Glasses and Random Fields, ed. by A. P. Young, World Scientific, Singapore (1998), v. 12, p. 443.
- P. Calabrese and A. Gambassi, J. Phys. A. 38, R133 (2005).
- P. V. Prudnikov, V. V. Prudnikov, E. A. Pospelov, P. N. Malyarenko, and A. N. Vakilov, Prog. Theor. Exp. Phys. **2015**, 053A01 (2015).
- А.Б. Дровоссков, Н.М. Крейнес, Д.И. Холин, А.В. Королев, М.А. Миляев, Л.Н. Ромашев, В.В. Устинов, Письма в ЖЭТФ 88, 126 (2008).
- T. Mukherjee, M. Pleimling, and Ch. Binek, Phys. Rev. B 82, 134425 (2010).
- В. В. Прудников, П. В. Прудников, Д. Е. Романовский, Письма в ЖЭТФ 102, 759 (2015).
- J. Bass and W.P. Pratt, J. Magn. Magn. Mater. 200, 274 (1999).
- V. V. Prudnikov, P. V. Prudnikov, and D. E. Romanovskiy, J. Phys. D: Appl. Phys. 49, 235002 (2016).
- П. В. Прудников, В. В. Прудников, М. А. Медведева, Письма в ЖЭТФ 100, 501 (2014).

- P. V. Prudnikov, V. V. Prudnikov, M. A. Menshikova, and N. I. Piskunova, JMMM 387, 77 (2015).
- В. В. Прудников, А. Н. Вакилов, П. В. Прудников, Фазовые переходы и методы их компьютерного моделирования, Физматлит, М. (2009).
- В. В. Прудников, П. В. Прудников, А. Н. Вакилов, Теоретические методы описания неравновесного критического поведения структурно неупорядоченных систем, Физматлит, М. (2013).
- S.T. Bramwell and P.C.W. Holdsworth, J. Phys.: Condens. Matter 5, L53 (1993).
- В. Л. Березинский, ЖЭТФ 59, 907 (1970); В. Л. Березинский, Низкотемпературные свойства двумерных систем, Физматлит, М. (2007).
- J. M. Kosterlitz and D. J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973).
- F. Huang, M. T. Kief, G. J. Mankey, and R. F. Willis, Phys. Rev. B 49, 3962 (1994).
- A. Asad and B. Zheng, J. Phys. A: Math. Theor. 40, 9957 (2007).
- 22. A.J. Bray, Adv. Phys. 43, 357 (1994).
- A. J. Bray, A. J. Briant, and D. K. Jervis, Phys. Rev. Lett. 84, 1503 (2000).
- 24. B. Berche, J. Phys. A **36**, 585 (2003).
- В. В. Прудников, П. В. Прудников, С. В. Алексеев, И. С. Попов, ФММ 115, 1254 (2014).
- L. Berthier, P.C.W. Holdsworth, and M. Sellitto, J. Phys. A 34, 1805 (2001).
- H. Weber and P. Minnhagen, Phys. Rev. B 37, 5986 (1988).