Home
For authors
Submission status

Archive
Archive (English)
Current
   Volumes 113-121
   Volumes 93-112
      Volume 112
      Volume 111
      Volume 110
      Volume 109
      Volume 108
      Volume 107
      Volume 106
      Volume 105
      Volume 104
      Volume 103
      Volume 102
      Volume 101
      Volume 100
      Volume 99
      Volume 98
      Volume 97
      Volume 96
      Volume 95
      Volume 94
      Volume 93
Search
VOLUME 104 (2016) | ISSUE 11 | PAGE 818
Scroll-wave dynamics in the presence of ionic and conduction inhomogeneities in an anatomically realistic mathematical model for the pig heart
Abstract
Nonlinear waves of the reaction-diffusion (RD) type occur in many biophysical systems, including the heart, where they initiate cardiac contraction. Such waves can form vortices called scroll waves, which result in the onset of life-threatening cardiac arrhythmias. The dynamics of scroll waves is affected by the presence of inhomogeneities, which, in a very general way, can be of ionic type, i.e., they affect the reaction part, or conduction type, i.e., they affect the diffusion part of an RD-equation. We demostrate, for the first time, by using a state-of-the-art, anatomically realistic model of the pig heart, how differences in the geometrical and biophysical nature of such inhomogeneities can influence scroll-wave dynamics in different ways. Our study reveals that conduction-type inhomogeneities become increasingly important at small length scales, i.e., in the case of multiple, randomly distributed, obstacles in space at the cellular scale (0.2–0.4mm). Such configurations can lead to scroll-wave break up. In contrast, ionic inhomogeneities, affect scroll-wave dynamics significantly at large length scales, when these inhomogeneities are localized in space at the tissue level (5–10mm). In such configurations, these inhomogeneities can attract scroll waves, by pinning them to the heterogeneity, or lead to scroll-wave breakup.