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Cavity polaritons are composite bosons originat-

ing due to the strong coupling of confined quasi-two-

dimensional excitons and cavity photons. Their lifetime

is very small (τ ∼ 10−50 ps in GaAs-based cavities),

however, they can form long-lived macroscopically oc-

cupied states under coherent optical excitation. Such

states are considered as highly nonequilibrium Bose con-

densates obeying the generalized Gross–Pitaevskii equa-

tion with dissipation and external driving. The right-

and left-circular polarization components (σ±) of the

optical field correspond to the spin-up (Jz = +1) and

spin-down (Jz = −1) components of the polariton fluid.

Polaritons with parallel spins repel each other; the in-

teraction between polaritons with anti-parallel spins is

comparatively weak. The nonlinearity makes the opti-

cal response multistable [1, 2]. Switches between differ-

ent steady-state branches occur as sharp jumps in the

cavity field near certain critical values of the pump pa-

rameters [3]. These jumps proceed on the scale of several

τ which is much shorter than a typical duration of con-

trolled switches in lasers.

In this Letter we show that multistability can also

manifest itself in spin pattern formation. Namely, the

spin-up and spin-down polaritons can be dynamically

separated in the cavity plane under linearly polarized

(spin-symmetric) optical excitation. As a result, the cir-

cular polarization of the emitted light is spatially mod-

ulated within the wave front. Previously, the only way

to implement spin patterning in laterally homogeneous

cavities was to vary the pump intensity [4]; otherwise,

the dominant spin state was found to spread throughout

the pumped spot [5]. Here we propose to control the po-

lariton spin by varying the pump polarization direction

that becomes a very important governing parameter in

anisotropic microcavities [6, 7].

The spinor Gross–Pitaevskii equation reads:
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The two-component macroscopic wavefunction ψ± de-

pends on time and spatial coordinates in a two-

dimensional active cavity layer. The choice of V = 1

determines the units of ψ and pump amplitude f ; in par-

ticular, |ψ±|2 have the dimension of energy and repre-

sent the blue shifts of the σ± resonances. In the general

case, energy E = E(−i~∇) implies the dispersion law

common for both spin components; γ is the decay rate.

The eigenstates at ψ± → 0 are polarized linearly in the x

and y directions so long as ψ± = (ψx ∓ iψy)/
√
2 by def-

inition, and g ≡ Ex −Ey is the splitting between them.

Such anisotropy (lifted x/y degeneracy) may come from

a lateral stress along one of the main axes x, y.

We show that the anisotropy results in a finite right

or left circular polarization of the cavity field depend-

ing on the pump polarization direction. Hence, the latter

parameter predetermines which of the spin-up and spin-

down components is amplified on reaching the bistabil-

ity threshold. On the other hand, the same effect of the

x/y splitting also reveals itself as spin coupling and as

such makes the amplified spin component suppress the

other. This stabilizes the states with high circular polar-

izations. In what follows we consider the pump source

with spatially varying polarization direction and inves-

tigate the resulting spin distributions of the cavity field.

Let the pump source have the following form in polar

coordinates (r, φ):

f±(r, φ, t) = f exp

[

− (r −R)2

2a2
∓ imφ− i

Ep

~
t

]

. (2)

The pump profile has the shape of a ring of radius

R = 40 µm and thickness a ≈ 3 µm. Integer numbers

−m and +m correspond to the angular momenta of the

σ+ and σ− polarization components, respectively. Simi-

lar distributions can be implemented with the use of the

Laguerre–Gauss beams [8]. Thus, the pump has strictly

linear yet angle-dependent polarization. The angle be-

tween the polarization direction and the x axis equals

mφ.

Fig. 1 represents the cases of m = 2, 3, 4 slightly

above the threshold pump density. At larger m, the ten-
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Fig. 1. (Color online) Steady-state distributions of

|ψ−(x, y)|2 (left side) and |ψ+(x, y)|
2 (right side) for

W/Wthr ≈ 1.5 and m = 2 (a), m = 3 (b), and m = 4

(c). In each panel, |ψ±|
2 are normalized to unity

dency of the high-energy states with a given spin to

spread in all directions due to their free flow counter-

acts the spin separating mechanism. Nevertheless it is

clearly seen that the opposite-spin regions remain sep-

arated even when their sizes are reduced to several mi-

crons at m = 4. Here the radial flux of polaritons be-

comes especially noticeable in spite of the sharp decrease

of the pump intensity in the radial direction.

To summarize, in this work we have predicted a novel

mechanism of spin pattern formation in semiconduc-

tor microcavities with strong exciton-photon coupling.

Unlike spin textures in non-resonantly excited Bose–

Einstein condensates (e.g., [9]), it does not require a

specially prepared potential landscape. Controlled spa-

tial separation of opposite-spin polaritons results in

the output light whose circular polarization is modu-

lated within the wave front. In view of very fast optical

switches in polariton systems, this effect may find use

in the field of information encoding and transmission.
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