## Эффекты нестехиометрии и упорядочения на периоде базисной решетки карбида ванадия VC<sub>u</sub>

А. С. Курлов, А. И. Гусев<sup>1)</sup>

Институт химии твердого тела УрО РАН, 620990 Екатеринбург, Россия

Поступила в редакцию 24 января 2017 г.

Изучено влияние нестехиометрии и упорядочения на период  $a_{B1}$  базисной решетки карбида ванадия  $VC_y$  (0.65 < y < 0.875). С учетом направления статических смещений атомов вблизи вакансии рассмотрено изменение периода решетки неупорядоченного карбида  $VC_y$  при уменьшении содержания углерода. Предложена модель расчета периода  $a_{B1}$  базисной решетки карбида ванадия с учетом нестехиометрии и упорядочения. Показано, что упорядочение карбида ванадия  $VC_y$  с образованием сверхструктур  $V_6C_5$  и  $V_8C_7$  приводит к росту периода базисной решетки по сравнению с неупорядоченным карбидом.

DOI: 10.7868/S0370274X17060030

Карбид ванадия VC<sub>y</sub> входит в группу сильно нестехиометрических соединений переходных металлов IV-VI групп (M = Ti, Zr, Hf, V, Nb, Ta) [1]. Неупорядоченный кубический (пр. гр.  $Fm\bar{3}m$ ) карбид ванадия имеет широкую область гомогенности от VC<sub>0.65</sub> до VC<sub>0.875</sub> с уникальным положением верхней границы, существенно удаленной от стехиометрического состава MC<sub>1.0</sub> [1]. Других неупорядоченных кубических карбидов с таким положением верхней границы области гомогенности нет. В области гомогенности неупорядоченного VC<sub>y</sub> в результате отжига при температуре ниже 1360 К могут образовываться две упорядоченные фазы V<sub>6</sub>C<sub>5</sub> и V<sub>8</sub>C<sub>7</sub> [1– 3]. Особенно легко образуется кубическая (пр. гр.  $P4_332$ ) упорядоченная фаза V<sub>8</sub>C<sub>7</sub>.

В литературе есть сведения об изменении периода кристаллической решетки в зависимости от состава нестехиометрического кубического карбида ванадия. Однако в большинстве исследований не определено, каково структурное состояние изученных образцов – неупорядоченное или упорядоченное.

Впервые увеличение периода базисной решетки при превращении  $VC_{0.875} \rightarrow V_8C_7$  было зафиксировано в работе [3], согласно которой при комнатной температуре период базисной решетки закаленного неупорядоченного карбида  $VC_{0.875}$  составлял 4.1662 Å, а упорядоченного карбида этого же состава – 4.1667 Å (или 8.3334 Å для кубической сверхструктуры  $V_8C_7$  с удвоенным периодом решетки). Это хорошо согласуется со скачкообразным изменением у карбида ванадия периода базисной решетки от 4.202 до 4.200 Å в результате разупорядочения фа-

зы V<sub>8</sub>C<sub>7</sub> при нагреве выше температуры превращения порядок  $\rightarrow$  беспорядок  $T_{\rm trans} = 1413 \pm 10$  K [3]. В [4] установлено, что при комнатной температуре период базисной решетки упорядоченной моноклинной фазы V<sub>6</sub>C<sub>5</sub> во всей ее области гомогенности больше, чем период  $a_{B1}$  неупорядоченного VC<sub>y</sub>.

Работ по определению периода решетки именно неупорядоченного карбида ванадия мало. В работе [5] однофазные образцы кубического карбида ванадия VC<sub>y</sub> (y = 0.762, 0.782, 0.808, 0.825, 0.869) были синтезированы газовой карбидизацией волокон ванадия диаметром ~ 0.25 мм в метане CH<sub>4</sub> при ~ 1780 К в течение 8 ч. В работе [6] образцы VC<sub>y</sub> (y = 0.72, 0.74, 0.76, 0.79, 0.84 и 0.88) были синтезированы карботермическим восстановлением оксида V<sub>2</sub>O<sub>3</sub> газовой сажей при температуре ~ 2300 К в течение 15 ч; образцы от VC<sub>0.72</sub> до VC<sub>0.79</sub> содержали до 1.0 ат.% примесного кислорода, а в образцах VC<sub>0.84</sub> и VC<sub>0.88</sub> содержание примесного кислорода было ~ 0.3 ат.%.

В работах [4,7] образцы неупорядоченного кубического карбида ванадия  $VC_y$  (y = 0.66, 0.79, 0.83, 0.87) получали горячим прессованием смеси порошков карбида ванадия  $VC_{0.87}$  и металлического ванадия в атмосфере аргона Ar при температуре около 2200 K и давлении прессования 35 МПа в течение 0.5 ч. Содержание примесного кислорода в полученных образцах составляло от 0.3 до 0.6 ат.%.

Данная работа впервые посвящена систематическому определению зависимости периода базисной решетки со структурой B1 от содержания углерода в неупорядоченном кубическом (пр. гр.  $Fm\bar{3}m$ ) карбиде ванадия VC<sub>y</sub> и в упорядоченных моноклинной (пр. гр. C2/m) V<sub>6</sub>C<sub>5</sub> и кубической (пр. гр.  $P4_332$ ) V<sub>8</sub>C<sub>7</sub> фазах в пределах их областей гомогенности.

<sup>&</sup>lt;sup>1)</sup>e-mail: gusev@ihim.uran.ru



Рис. 1. (Цветной онлайн) Рентгенограммы синтезированных образцов VC<sub>y</sub>. На левой вставке показан участок рентгенограммы карбида VC<sub>0.87</sub> с дифракционными отражениями, характерными для упорядоченной фазы V<sub>8</sub>C<sub>7</sub>. На вставке справа – расщепление дифракционных отражений (200)<sub>B1</sub> карбидов VC<sub>y</sub> и смещение отражений (200)<sub>B1</sub> в область меньших углов  $2\theta$  или больших межплоскостных расстояний d при увеличении содержания углерода y

Образцы нестехиометрического кубического (пр. гр.  $Fm\bar{3}m$ ) карбида VC<sub>y</sub> с разным составом (y = 0.68, 0.71, 0.73, 0.76, 0.81, 0.85 и 0.87) в пределах

его области гомогенности синтезировали твердофазным вакуумным спеканием смеси порошков V и C. Синтез проводили в вакуумной высокотемператур-

| Атом          | Позиция и | Атомные координаты $(a = 8.336(1) \text{ Å})$ |           |           | Степень     |
|---------------|-----------|-----------------------------------------------|-----------|-----------|-------------|
|               | кратность | x/a                                           | x/a       | y/a       | заполнения  |
| С1 (вакансия) | 4(b)      | 0.6250                                        | 0.6250    | 0.6250    | 0           |
| C2            | 4(a)      | 0.1250                                        | 0.1250    | 0.1250    | $\sim 0.97$ |
| C3            | 12(d)     | 0.1250                                        | 0.6248(2) | 0.6252(2) | 1.0         |
| C4            | 12(d)     | 0.1250                                        | 0.3720(2) | 0.8780(2) | 1.0         |
| V1            | 8(c)      | 0.3705                                        | 0.3705    | 0.3705    | 1.0         |
| V2            | 24(e)     | 0.126                                         | 0.3815    | 0.128     | 1.0         |

**Таблица 1.** Атомные координаты в упорядоченной кубической (пр. гр.  $\# 212 - P4_332$ ) фазе  $V_8C_{7-\delta}$  ( $\delta \simeq 0.03$ ) нестехиометрического карбида ванадия

ной печи LF-22-2000 (Centorr/Vacuum Industries) при температуре от 1573 до 2073 K в вакууме  $0.0013 \Pi a$  ( $10^{-5} MM pt.ct.$ ) в течение 5 ч.

Кристаллическую структуру, фазовый состав и параметры решетки образцов VC<sub>y</sub> определяли методом рентгеновской дифракции на автодифрактометре Shimadzu XRD-7000 в интервале углов  $2\theta =$ = 10...140° с пошаговым сканированием  $\Delta(2\theta) =$ = 0.03° и временем экспозиции 2 с в точке в излучении CuK $\alpha_{1,2}$ . Рентгенограммы анализировали с помощью программного пакета X'Pert HighScore Plus [8]. Кристаллическую структуру упорядоченного карбида V<sub>8</sub>C<sub>7</sub> дополнительно исследовали методом TOF-нейтронографии (time-of-flight – по времени пролета) на дифрактометре высокого разрешения HRFD [9], действующем на импульсном реакторе ИБР-2 (ОИЯИ, Дубна). Измерения выполняли при температуре 293 К.

Химический анализ образцов  $VC_y$  на содержание общего  $C_{total}$  и свободного  $C_{free}$  углерода проводили с помощью анализатора МЕТАВАК CS-30. Содержание примесных элементов определяли на массспектрометре Perkin Elmer SCIEX-ELAN 9000 и методом EDX анализом на микроскопе JEOL JSM 6390 LA с анализатором JED 2300.

На рис. 1 показаны рентгенограммы синтезированных карбидов ванадия VC<sub>y</sub> с разным содержанием углерода y в интервале от 0.68 до 0.87. О высокой степени гомогенности синтезированных карбидов VC<sub>y</sub> свидетельствует расщепление CuK $\alpha_{1,2}$ -дублетов, которое наблюдается уже для линии (200) в области малых углов  $2\theta \approx 43^{\circ}$  (см. вставку на рис. 1). Образцы VC<sub>y</sub> (y = 0.68, 0.71, 0.73, 0.76, 0.81, 0.85) содержат только неупорядоченный кубический (пр. гр.  $Fm\bar{3}m$ ) карбид ванадия. Уточнение дифракционных данных образца VC<sub>0.87</sub> показало, что даже после закалки от температуры ~ 2000 К этот образец содержит ~ 80 вес.% упорядоченной кубической (пр. гр.  $P4_{3}32$ ) фазы V<sub>8</sub>C<sub>7</sub> и ~ 20 вес.% неупорядоченного карбида VC<sub>0.87</sub> с периодом 4.162 Å (см. рис. 1,

левая вставка). Период решетки  $a_{ord}$  упорядоченной фазы V<sub>8</sub>C<sub>7</sub> составляет 8.336 Å. Период решетки базисной неупорядоченной кубической фазы равен половине периода решетки  $a_{ord}$  упорядоченной фазы, т.е.  $a_{ord}/2 = 4.168$  Å, и больше периода  $a_{B1} = 4.162$  Å неупорядоченного карбида VC<sub>0.875</sub>. Это согласуется с данными [4] о скачкообразном увеличении периода базисной решетки карбида ванадия при превращении беспорядок-порядок VC<sub>0.875</sub>-V<sub>8</sub>C<sub>7</sub>.

Нейтронограмма карбида ванадия VC<sub>0.87</sub> изображена на рис. 2а. На ней наряду со структурными отражениями карбида VC<sub>0.875</sub> видны слабые сверхструктурные отражения упорядоченной фазы V<sub>8</sub>C<sub>7</sub>. Особенно хорошо они наблюдаются в области больших  $d_{\rm hkl}$ . На профилях некоторых дифракционных пиков слева наблюдаются плечи, наличие которых обусловлено присутствием в исследованном образце неупорядоченной фазы  $VC_{0.875}$  со структурой B1, период решетки которой  $a_{B1} < a_{V_8C_7}/2$ . Поэтому обработку нейтронограммы проводили в двухфазной модели, учитывающей наличие упорядоченной V<sub>8</sub>C<sub>7</sub> и неупорядоченной VC<sub>0.875</sub> фаз. Как пример на рис. 2b показан участок нейтронного дифракционного спектра, а на вставке приведено описание профилей отражения (222) упорядоченной фазы V<sub>8</sub>C<sub>7</sub> и отражения  $(111)_{B1}$  неупорядоченной фазы VC<sub>0.875</sub>.

Координаты атомов углерода и ванадия в структуре фазы  $V_8C_7$  определяли по дифракционным нейтронным и рентгеновским данным.

Найденная структура упорядоченной фазы  $V_8C_{7-\delta}$  (табл. 1) отличается небольшими смещениями атомов V1, несколько большими смещениями атомов V2 и малыми смещениями атомов C3 и C4 из позиций идеальной сверхструктуры. Атомы V2, образующие ближайшее октаэдрическое окружение  $\Box V_6$  вакантных узлов  $\Box$  углеродной подрешетки, смещены по направлению к вакансии. Ранее заметные смещения атомов в упорядоченной фазе типа  $V_8C_7$  по направлению к вакансии были отмечены авторами [7, 10]. Все расстояния V–V в



Рис. 2. (Цветной онлайн) Общий вид (а) нейтронограммы карбида ванадия  $VC_{0.87}$  и (b) – уточнение нейтронограммы. Наряду с упорядоченной фазой присутствует неупорядоченная фаза со структурой *B*1. Экспериментальный спектр показан точками, теоретический спектр и вклады упорядоченной и неупорядоченной фаз в него – сплошными линиями. На вставке – описание отражения (222) упорядоченной фазы  $V_8C_7$  и отражения (111)<sub>*B*1</sub> неупорядоченной фазы  $VC_{0.875}$ . Короткие и длинные вертикальные штрихи указывают положения дифракционных отражений упорядоченной  $V_8C_7$  и неупорядоченной  $VC_{0.875}$  фаз соответственно

идеальной сверхструктуре V<sub>8</sub>C<sub>7</sub> равны 2.946 Å, а в реальной сверхструктуре составляют от 2.883 до 3.058 Å. Величина и направление атомных смещений в изученной сверхструктуре V<sub>8</sub>C<sub>7- $\delta$ </sub> показаны на рис. 3 в плоскости (001)<sub>B1</sub> или в эквивалентной ей плоскости (00*z*) с *z* ≈ 0.625 фазы V<sub>8</sub>C<sub>7</sub>. Изменение периода решетки  $a_{B1}(y)$  синтезированного карбида ванадия в области гомогенности кубической (пр. гр.  $Fm\bar{3}m$ ) неупорядоченной фазы VC<sub>y</sub> показано на рис. 4. Для сравнения приведены данные предшествующих исследований [4–6]. В пределах точности экспериментальных результатов



Рис. 3. (Цветной онлайн) Смещения атомов V и C вблизи вакантного узла в плоскости (00z) с  $z \approx 0.625$  фазы V<sub>8</sub>C<sub>7</sub>. Для наглядности размер смещений увеличен в 500 раз. Сечения вакантных октаэдров  $\Box$ V<sub>6</sub> плоскостью (00z) показаны пунктиром, тонкая сплошная линия – идеальная атомная сетка структуры B1 в плоскости (00z), нумерация атомов соответствует табл. 1



Рис. 4. (Цветной онлайн) Период решетки  $a_{B1}(y)$  карбида ванадия в области гомогенности кубической (пр. гр.  $Fm\bar{3}m$ ) неупорядоченной фазы VC<sub>y</sub>: (•) – [4], ( $\mathbf{V}$ ) – [5], ( $\Box$ ) – [6], (•) – данные настоящей работы. Границы области гомогенности фазы VC<sub>y</sub> показаны вертикальными пунктирами

все концентрационные зависимости периода являются квадратичными функциями от содержания атомов углерода y, т.е.  $a_{B1}(y) = a_0 + a_1y + a_2y^2$ . Данные [6] явно занижены из-за большого содержания примесного кислорода в неметаллической подрешетке карбидов, особенно в области от VC<sub>0.72</sub> до VC<sub>0.79</sub>. Наибольшее согласование данных из разных работ наблюдается в области VC<sub>0.80-0.87</sub>. Период решетки синтезированного в [6] неупорядоченного карбида ванадия VC<sub>y</sub> с кубической структурой *B*1 описывается функцией  $a_{B1}(y) = a_0 + a_1 y + a_2 y^2$  с параметрами  $a_0 = 3.8954, a_1 = 0.4550$  и  $a_2 = -0.1693$  Å.

Рентгеновское и нейтронографическое исследования упорядоченной фазы  $V_8C_7$  показало, что атомы V, образующие октаэдрическое окружение вакантных узлов  $\Box$  неметаллической подрешетки, смещены по направлению к вакансии. Если в неупорядоченном карбиде VC<sub>y</sub> атомы V тоже смещаются к вакансии, то рост концентрации вакантных междоузлий  $\Box V_6$ , имеющих меньший линейный размер по сравнению с заполненными октаэдрическими междоузлиями CV<sub>6</sub>, должен сопровождаться уменьшением периода  $a_{B1}$ . Действительно, увеличение концентрации вакансий (или уменьшение концентрации атомов углерода) сопровождается наблюдаемым уменьшением периода решетки неупорядоченного карбида ванадия VC<sub>y</sub> (см. рис. 4).

В нестехиометрических карбидах с базисной структурой B1 каждый атом металла находится в ближайшем окружении шести узлов неметаллической подрешетки, которые могут быть заняты атомами углерода или вакантны. Это дает возможность представить карбид VC<sub>y</sub> со структурой B1как совокупность кластеров в форме многогранников Дирихле–Вороного, т.е. искаженной ячейки Вигнера–Зейтца (в структуре B1 ячейкой Вигнера– Зейтца является ромбододекаэдр). Каждый кластер включает в себя атом V, расположенный в центре, и шесть узлов углеродной подрешетки (рис. 5), которые могут быть заняты атомами углерода или



Рис. 5. Кластерная фигура в виде ромбододекаэдра, используемая для описания объема кристаллической решетки нестехиометрического карбида ванадия VC<sub>y</sub> с базисной кубической структурой типа B1: ( $\circ$ ) – узел углеродной подрешетки, ( $\bullet$ ) – атом ванадия V

вакантны. Такие кластеры заполняют весь объем кристалла, обеспечивают континуальность среды, учитывают все узлы кристаллической решетки и позволяют описать изменение объема или периода элементарной ячейки карбида  $VC_y$  как функцию состава y и степени дальнего порядка  $\eta$ .

В первом приближении будем полагать, что объем кластера  $V_m$  зависит только от числа вакансий m в нем. В этом случае объем V кристалла можно представить в виде

$$V = N \sum_{m=0}^{6} \lambda_m P_m(y,\eta) V_m, \qquad (1)$$

где N – число узлов металлической подрешетки;  $\lambda_m = C_6^m$  – мультиплетность *m*-конфигурации кластера.  $P_m(y,\eta)$  – вероятность образования в кристалле кластера с числом вакансий, равным m;  $\eta$  – параметр дальнего порядка.

С другой стороны, объем неупорядоченного карбида можно представить через период решетки  $a_{B1}(y) = a_0 + a_1 y + a_2 y^2$  как  $V = (N/4) a_{B1}^3(y)$ . С учетом этого уравнение (1) для неупорядоченного карбида примет вид

$$\sum_{m=0}^{6} \lambda_m P_m(y,0) V_m = (a_0 + a_1 y + a_2 y^2)^3 / 4, \quad (2)$$

где  $P_m(y,0) = (1-y)^m y^{(6-m)}$  – вероятность образования в неупорядоченном карбиде кластера, включающего *m* вакансий. Решением уравнения (2) является выражение для объема кластера:

$$V_m = \frac{1}{4} \sum_{k=m}^{6} A_{6-k} \frac{k!(6-m)!}{6!(k-m)!},$$
(3)

где  $A_{6-k}$  – коэффициенты при  $y^k$  в правой части уравнения (2).

Вклад каждого кластера в общий объем кристалла пропорционален его вероятности  $P_m$ . Для равновесных условий вероятность  $P_m(y, \eta)$  существования кластера, содержащего *m* вакансий, в упорядоченной фазе типа  $M_{2t}C_{2t-1}$  с любой степенью дальнего порядка можно представить в виде [1]:

$$P_{m,t}(y,\eta) = \frac{1}{\Phi} \sum_{f} \frac{g_f}{C_6^{v(t,f)}} \sum_{v=0}^{v(t,f)} C_{6-m}^{v(t,f)-v} C_m^v n_1^{[v(t,f)-v]} \times n_2^{[6-m-v(t,f)+v]} (1-n_1)^v (1-n_2)^{(m-v)}, \quad (4)$$

где  $g_f$  – мультиплетность неэквивалентных позиций металлических атомов, находящихся в центре каждого кластера ( $\sum_f g_f = \Phi$ ); v(t, f) – число узлов вакансионной подрешетки, принадлежащих кластеру с мультиплетностью  $g_f$  в сверхструктуре типа

Письма в ЖЭТФ том 105 вып. 5-6 2017

 $M_{2t}C_{2t-1}$ ;  $n_1 = y - (2t-1)\eta/2t$  и  $n_2 = y + \eta/2t$  – вероятности обнаружения атома углерода на узле вакансионной и углеродной подрешеток при образовании сверхструктуры типа  $M_{2t}C_{2t-1}$ .

Используя уравнения (1), (3) и (4), можно найти объем кристалла и соответственно период базисной решетки  $a_{B1}$  нестехиометрического карбида VC<sub>y</sub> с любой степенью порядка  $\eta$ . В упорядоченном карбиде величина  $\eta$  может изменяться от  $\eta_{\text{trans}}$  (значение параметра порядка в точке перехода) до  $\eta_{\text{max}}$ . Поэтому период  $a_{B1}$  упорядоченного карбида можно рассчитать для этих двух предельных случаев.

Согласно [1] зависимости  $\eta_{\text{max}}$  и  $\eta_{\text{trans}}$  от состава карбида  $MC_y$  при образовании упорядоченной фазы  $M_{2t}C_{2t-1}$  без учета ее границ следующие:

$$\eta_{\max}(y) = \begin{cases} 2t(1-y), & \text{если} \quad y > (2t-1)/2t, \\ 2ty/(2t-1), & \text{если} \quad y < (2t-1)/2t \end{cases}$$
(5)

И

$$(\eta_{\text{trans}}/2)[\partial S_{\text{c}}(y,\eta)/\partial\eta]_{\eta=\eta_{\text{trans}}} - S_{\text{c}}(y,\eta_{\text{trans}}) + S_{\text{c}}(y,0) = 0, \qquad (6)$$

где  $S_{\rm c}(y,\eta)$  – конфигурационная энтропия, равная

$$S_{\rm c}(y,\eta) = -(k_{\rm B}/2t)\{n_1\ln n_1 + (1-n_1)\ln(1-n_1) + (2t-1)[n_2\ln n_2 + (1-n_2)\ln(1-n_2)]\}.$$
 (7)

Области гомогенности упорядоченных фаз  $M_{2t}C_{2t-1}$  ограничены нижней  $y_{low}$  и верхней  $y_{up}$  границами. На границах области гомогенности параметр дальнего порядка обращается в ноль, а максимальная величина  $\eta$  может быть достигнута для стехиометрического состава  $y_{st} = (2t - 1)/2t$  упорядоченной фазы. Это можно учесть, представив зависимость параметра дальнего порядка  $\eta_b$  от состава y упорядоченной фазы как

$$\eta_{\rm b} = \begin{cases} \eta_{\rm id}(y - y_{\rm low}) / (y_{\rm st} - y_{\rm low}), & \text{если } y_{\rm st} \ge y \ge y_{\rm low}, \\ \eta_{\rm id}(y - y_{\rm up}) / (y_{\rm st} - y_{\rm up}), & \text{если } y_{\rm st} \le y \le y_{\rm up}, \end{cases}$$
(8)

где  $\eta_{id}(y)$  – зависимость максимального или равновесного параметра дальнего порядка для сверхструктуры  $M_{2t}C_{2t-1}$  от ее состава y, рассчитанная без учета границ области гомогенности по формулам (5) или (6) соответственно.

Фаза  $V_6C_5$  имеет область гомогенности от  $VC_{0.75}$  до  $VC_{0.845}$  [1, 4], у фазы  $V_8C_7$  область гомогенности очень узкая от  $VC_{0.871}$  ( $V_8C_{6.97}$ ) до  $VC_{0.877}$  ( $V_8C_{7.02}$ ) [10, 11].

В первом варианте расчета предполагали, что в нестехиометрическом карбиде ванадия VC<sub>y</sub> достигнута максимальная степень дальнего порядка  $\eta_{\rm b-max}$ . Во втором варианте предполагали, что в упорядоченном карбиде параметр дальнего порядка имеет такое же значение, как при температуре фазового перехода беспорядок-порядок  $T_{\rm trans}$ , т.е.  $\eta_{\rm b-trans}$ .



Рис. 6. Зависимости периода базисной кубической решетки  $a_{B1}$  от состава карбида ванадия в неупорядоченном (сплошная линия) и упорядоченных V<sub>6</sub>C<sub>5</sub> и V<sub>8</sub>C<sub>7</sub> (пунктир) состояниях при температуре 300 К. (×) – расчет в приближении максимальной степени дальнего порядка  $\eta_{b-max}$  в упорядоченных фазах, (+) – расчет в приближении степени дальнего порядка, соответствующей температуре фазового перехода беспорядок– порядок  $T_{trans}$ , т.е.  $\eta_{b-trans}$ . Границы областей гомогенности фаз VC<sub>y</sub>, V<sub>6</sub>C<sub>5</sub> и V<sub>8</sub>C<sub>7</sub> показаны вертикальными пунктирами

Рассчитанные изменения периода базисной решетки  $a_{B1}$  неупорядоченного карбида ванадия VC<sub>y</sub> и упорядоченных фаз V<sub>6</sub>C<sub>5</sub> и V<sub>8</sub>C<sub>7</sub> в их областях гомогенности показаны на рис. 6. Видно, что упорядочение сопровождается некоторым ростом периода  $a_{B1}$ по сравнению с неупорядоченным карбидом. Сравнение результатов расчета с литературными данными по периоду базисной решетки  $a_{B1}$  упорядоченных фаз V<sub>6</sub>C<sub>5</sub> [1,4] и V<sub>8</sub>C<sub>7</sub> [3,7] показало, что к экспериментальным значениям  $a_{B1}$  наиболее близки значения периода, рассчитанные в приближении  $\eta = \eta_{\text{b-trans}}$ .

Нанокристаллические порошки карбида ванадия, как правило, аттестуют по составу, сравнивая их период решетки с концентрационной зависимостью периода решетки крупнозернистого (bulk) карбида  $VC_y$ . Это неправильно, так как нанопорошки  $VC_y$ имеют очень большую удельную поверхность и химически активны к парам воды и газовым примесям, особенно к кислороду. Поэтому период решетки нанопорошков заметно отличается от такового для крупнозернистого карбида ванадия  $VC_y$ . Для нанопорошков  $VC_y$  нужно находить собственную зависимость  $a_{B1}$ -папо( $\nu$ ) периода решетки от состава.

Авторы благодарят И.А. Бобрикова и А.М. Балагурова за помощь в нейтронографическом исследовании. Исследование выполнено в ИХТТ УрО РАН за счет гранта Российского научного фонда (проект # 14-23-00025).

- A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides, Springer, Berlin-Heidelberg-New York-London (2001), 607 p.
- 2. А.И. Гусев, ЖФХ 74, 600 (2000).
- T. Athanassiadis, N. Lorenzelli, and C. H. de Novion, Ann. Chum. France 12, 129 (1987).
- V.N. Lipatnikov, W. Lengauer, P. Ettmayer, E. Keil, G. Groboth, and E. Kny, J. Alloys Comp. 261, 192 (1997).
- 5. L. Ramqvist, Jernkontorets Annaler 152, 467 (1968).
- А.С. Борухович, Н.М. Волкова, Изв. АН СССР. Неорган. материалы 7, 1529 (1971).
- D. Rafaja, W. Lengauer, P. Ettmayer, and V. N. Lipatnikov, J. Alloys Comp. 269, 60 (1998).
- X'Pert HighScore Plus. Version 2.2e (2.2.5). ©2009 PANalytical B. V. Almedo, the Netherlands.
- 9. A. M. Balagurov, Neutron News 16, 8 (2005).
- А.И. Гусев, А.С. Курлов, И.А. Бобриков, А.М. Балагуров, Письма в ЖЭТФ 102, 179 (2015).
- A.S. Kurlov, A.I. Gusev, E.Yu. Gerasimov, I.A. Bobrikov, A.M. Balagurov, and A.A. Rempel, Superlatt. Microstr. 90, 148 (2016).

2017