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Three-dimensional topological insulators (3D TI)
represent a new state of matter [1]. Their hallmark
is the formation of conducting surface states with the
Dirac dispersion relation, whereas the bulk states are
gapped. Recently a lot of interest has been attracted
to the physics of hybrid structures involving topologi-
cal insulators and superconductors, where in presence
of a magnetic field a Majorana fermion state can be re-
alized [2]. When the 3D topological insulator is placed
in the electrical contact with the s-wave superconduc-
tor (S), the superconducting pair correlations penetrate
into the topological state due to the proximity effect. In
accordance with the Pauli principle, it is customary to
distinguish four classes of symmetry of the induced pair
potential [3] (see Table 1).

Previously, the symmetry of the induced pair po-
tential in S/TI junctions was studied on the basis of
a simplified model, when the topological surface states
were described with an isotropic Dirac cone. The Hamil-
tonian of surface states in this model reads Ĥ0(k) =
= −µ+ v(kxσ̂y − kyσ̂x). Here µ is a chemical potential,
v is a Fermi velocity, k = (kx, ky) denotes in-plane
quasiparticle momentum, and σ̂j are the Pauli matri-
ces (j = x, y, z). However, such isotropic forms of the
Hamiltonian are only valid if the chemical potential lies
near the Dirac point. In realistic topological insulators it
usually lies well above this point, where the Dirac cone
is strongly anisotropic and its constant energy contour
has a snowflake shape [4]. This type of dispersion was
described by adding higher order terms in the momen-
tum to the Hamiltonian, Ĥ(k) = Ĥ0(k)+σ̂zλk

3 cos(3θ),
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where θ = arctan(ky/kx) and λ is the hexagonal warp-
ing strength [4].

In this work we consider a superconductor/fer-
romagnetic insulator/topological insulator (S/FI/TI)
junction along the z-direction. The structure is uniform
in the x-y plane. The FI interlayer is thin enough, so
that the superconducting correlations can penetrate the
TI surface states due to the proximity effect. The fer-
romagneic insulator layer is located at z = 0, while
topological insulator lies in z < 0 half-plane and the
superconductor layer in z > 0 half-plane. The Hamilto-
nian for the TI surface states can be written as (we use
“check” for 4× 4 and “hat” for 2× 2 matrices),

ȞS(k) =

(

Ĥ(k) + σ̂zM ∆̂

−∆̂ −Ĥ∗(−k)− σ̂zM

)

. (1)

Here ∆̂ = iσ̂y∆, where ∆ is the superconducting pair
potential, induced in the topological insulator surface
due to the proximity effect, and M is the exchange field
of the ferromagnetic insulator, which we consider to be
perpendicular to the topological surface.

To obtain the energy dispersion relation of topolog-
ical surface states we start with the following equation,
[

E − ȞS(k)
]

Ǧ = 1̌, where Ǧ is the Green’s function
on the TI surface, 1̌ is the unitary 4×4 matrix, and E
is the quasiparticle energy counted from the chemical
potential. By taking the inverse of this equation we can
obtain the Green’s function,

Ǧ =

(

Ĝee Ĝeh

Ĝhe Ĝhh

)

. (2)
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Table 1. Symmetry classification of the anomalous Green’s function. With respect to the sign change of the energy (or Matsubara
frequency) and momentum, the Green’s function can be even (E) or odd (O). The spin part can be divided into a singlet (S) or three
triplet (T) components. The pairing amplitude, given by the anomalous Green’s function, must be completely antisymmetric under the
sign change of the energy, momentum, and the exchange of spin components of the electrons making up the Cooper pair. The Pauli
principle allows for four different combinations; using a “energy/spin/momentum” notation: ESE, OSO, ETO, and OTE.

Energy/spin/momentum

Symmetry of the induced pairing symmetry

E → −E σ ↔ σ
′

k → −k

Even-frequency spin-singlet even-parity (ESE) + – +

Odd-frequency spin-singlet odd-parity (OSO) – – –

Even-frequency spin-triplet odd-parity (ETO) + + –

Odd-frequency spin-triplet even-parity (OTE) – + +

The diagonal blocks of the Ǧ matrix describe the prop-
agation of the electrons and holes separately, while the
off-diagonal blocks describe the interaction between the
electron and hole branches, providing the mixing of the
electron and hole degrees of freedom due to Andreev
reflections. To characterize the pair potential induced
in topological surface we have thus to consider the off-
diagonal part of Eq. (2), i.e. the anomalous Green’s func-
tion. Since Ĝeh and Ĝhe are related by complex conju-
gation it is sufficient to consider one of these matrices.

Expanding Ĝeh in Pauli matrices (where σ̂0 is a uni-
tary 2×2 matrix) we can write, Ĝeh = i

(

f0σ̂0 + fxσ̂x +
+ fyσ̂y + fzσ̂z

)

σ̂y , where f0 is the spin-singlet compo-
nent (↑↓ − ↓↑), fx and fy are the combinations of equal
spin triplet components, (↑↑ − ↓↓) and (↑↑ + ↓↓), cor-
respondingly, while fz is the hetero-spin triplet compo-
nent, (↑↓ + ↓↑). We have shown that the spin-singlet
f0 consists of the ESE and OSO components. We no-
tice that for the OSO pairing realization both nonzero
warping and nonzero exchange field should be present
in our system. The equal-spin triplet combinations fx
and fy both consist of the ETO and OTE components.
The OTE pairing realization in possible only at M 6= 0
or λ 6= 0. Finally, the hetero-spin triplet component fz
also consists of the ETO and OTE components. In the
absence of the hexagonal warping only the OTE pairing
remains, but it also disappears at zero magnetic mo-
ment.

Based on symmetry arguments we would like to for-
mulate a hypothesis of a possible effect, accessible for di-
rect experimental observation. Let us consider the two-
dimensional (2D) S/FI junction formed on the topo-
logical insulator surface in x-y plane (the S/FI bound-
ary is located at x = 0 along the y-axis). The fer-
romagnetic insulator layer lies in x < 0 half-plane,
while the superconductor layer in x > 0 half-plane.
As above, we consider the exchange field pointing out
of the plane in z-direction. Then the Hamiltonian of a
TI warped surface state in the presence of an exchange

field M can be written as ĤM = Ĥ(k) + σ̂zM , where
Ĥ(k) is determined above. Let us project this Hamil-
tonian on the S/FI boundary, i.e. on the y-axis. Then
the effective one-dimensional Hamiltonian for electronic
states at the S/FI boundary will look like Ĥeff(ky) =
= −µ− vky σ̂x + σ̂zλk

3
y cos(3θ) + σ̂zM . From the view-

point of the time reversal and spatial symmetries it
is equivalent to the following one-dimensional Hamil-
tonian of a topological nano-wire, which was recently
considered in [5], Ĥwire(ky) = −µ+αky σ̂y+Mσ̂, where
Mσ̂ = Mxσ̂x +Myσ̂y +Mzσ̂z , and α is some constant
(Mi 6= 0, i = x, y, z). It was recently shown in [5] that a
Josephson junction through such nano-wire will be char-
acterized by spontaneous supercurrent at zero phase dif-
ference. In the aforementioned 2D structure it will corre-
spond to the spontaneous supercurrent along the S/FI
boundary. It is important to mention that the super-
current appears only in the model with the hexagonal
warping effect.
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