Дырочно-стимулированный перенос ловушек в диэлектриках

Ю. Н. Новиков¹⁾

Институт физики полупроводников им. А.В. Ржанова СО РАН, 630090 Новосибирск, Россия

Поступила в редакцию 21 марта 2017 г.

С учетом двухзонной проводимости, рассмотрен перенос ловушек в диэлектрике в электрическом поле после захвата на них дырок. Расстояние, на которое успевает пройти ловушка с захваченной дыркой, экспоненциально уменьшается с увеличением электрического поля. Определена подвижность ловушек с захваченными дырками в Si₃N₄, которая составила $3 \cdot 10^{-15}$ см²/(B · c).

DOI: 10.7868/S0370274X17100058

1. Введение. Большинство диэлектриков, за исключением SiO₂, имеют высокую концентрацию электронных и дырочных ловушек ($\sim 10^{20}$ см⁻³), благодаря которым осуществляется перенос заряда в диэлектриках [1–3]. В качестве таких ловушек служат различные дефекты в кристалле. В общем случае проводимость диэлектриков является двухзонной [3], т.е. осуществляется электронами и дырками, которые инжектируются соответственно из отрицательно и положительно смещенных электродов.

В последнее время в литературе интенсивно обсуждается ионная проводимость в диэлектриках (оксидах и нитридах) в связи с открытием резистивного эффекта [4–10]. В работе [4] в TiO₂ рассмотрен одновременный перенос ионов кислорода и вакансий кислорода. При сопоставлении эксперимента с расчетом для подвижности вакансий использовали значение $3.87 \cdot 10^{-17} \, \mathrm{cm}^2 / \mathrm{B} \cdot \mathrm{c}$, а для подвижности ионов кислорода значение было на три порядка больше [4]. В работе [5] для объяснения мульти-уровневого переключения в Ta₂O₅ рассмотрен перенос ионов кислорода с подвижностью $\sim 3 \cdot 10^{-15} \, \mathrm{cm}^2/\mathrm{B} \cdot \mathrm{c}.$ Множество работ посвящено переносу вакансий в диэлектриках: TaO_x [6], ZnO [7], HfO₂ [8], $Pr_{1-x}Ca_xMnO_3$ [9]. YBeличение подвижности ионов в диэлектриках объясняется локальным Джоулевым нагревом [10].

Ловушки в диэлектриках могут захватывать электроны и/или дырки [11–15]. С помощью квантово-химических расчетов указанных в работах показано: Si-Si связь в Si₃N₄ является ловушкой для электрона и дырки [11]; оксидные вакансии ответственны за перенос дырок в TiO₂ [12]; поляроны и биполяроны являются глубокими ловушками для электронов и дырок в HfO₂ [13]; легирование TiO₂, ZrO₂, HfO₂ атомами Al или Ga приводит к созданию в этих материалах дырочных ловушек [14]. Захваченная на ловушку дырка способствует ослаблению (разрыву) химической связи с ближайшими атомами. В работе [15] показано, что захват дырки на кислородную вакансию в HfO₂, ZrO₂ значительно понижает ее энергию активации. Поэтому, наряду с локальным Джоулевым нагревом [10], захват дырок на ловушки может способствовать увеличению ионной проводимости в диэлектриках.

Цель работы – рассмотреть, с учетом механизмов дрейфа и диффузии, дырочно-стимулированный перенос ловушек в диэлектриках; из сравнения эксперимента [16] с расчетом оценить подвижность ловушек с захваченными дырками в Si₃N₄.

2. Модель. При рассмотрении переноса заряда в диэлектриках, с учетом двухзонной проводимости, как правило, численно, самосогласованно решаются одномерные уравнения Шокли–Рида–Холла и уравнение Пуассона [1–3]. Для описания эволюции электронов, дырок и ловушек для электронов используют следующие уравнения:

$$\frac{\partial n}{\partial t} - \frac{\partial n}{\partial x}v = -\sigma_n v n (N_n - n_t) + n_t P_n - \sigma_n^r v n p_t, \quad (1)$$

$$\frac{\partial p}{\partial t} - \frac{\partial p}{\partial x}v = -\sigma_p v p(N_p - p_t) + p_t P_p - \sigma_p^r v p n_t, \quad (2)$$

$$\frac{\partial n_t}{\partial t} = \sigma_n v n (N_n - n_t) - n_t P_n - \sigma_p^r v p n_t, \qquad (3)$$

где n, n_t и N_n – концентрации свободных, захваченных на ловушки электронов и общая концентрация ловушек для электронов соответственно, P_n – вероятность ионизации электронных ловушек, σ_n – сечение захвата на ловушку электрона, σ_n^r – сечение рекомбинации электрона с захваченной на ловушку дырки, v – дрейфовая скорость электронов и дырок. Аналогичные величины $p, p_t, N_p, P_p, \sigma_p, \sigma_p^r$ вводятся

¹⁾e-mail: nov@isp.nsc.ru

для дырок и дырочных ловушек. Для описания потока ловушек с захваченными дырками J_p используем выражение:

$$J_p = \mu F p_t + D \frac{\partial p_t}{\partial x},\tag{4}$$

где μ , D – подвижность и коэффициент диффузии ловушек соответственно, F – электрическое поле. Величины μ и D экспоненциально зависят от энергии активации.

В настоящей работе приняты следующие допущения: энергия активации ловушки после захвата на ловушку дырки значительно уменьшается и поэтому перемещением ловушки до захвата дырки пренебрегаем; электрические поля являются достаточно слабыми, чтобы заметно изменять энергию активации ловушки и поэтому здесь рассматриваем линейную зависимость дрейфовой составляющей потока ловушек от электрического поля. Под дрейфом ловушки, по аналогии с [6-9], понимается такая локальная перестройка атомов вблизи ловушки, после которой ловушка с захваченной дыркой оказывается ближе к электроду с отрицательным потенциалом. Для описания эволюции дырочных ловушек, с учетом их дрейфа и диффузии, необходимо рассмотреть два уравнения, одно из которых описывает изменение концентрации "подвижных" ловушек с захваченными дырками, другое - "неподвижных" нейтральных (p_t^0) .

Уравнение неразрывности для ловушек с захваченными дырками

$$\frac{\partial p_t}{\partial t} - \frac{\partial}{\partial x} J_p = \sigma_p v p p_t^0 - p_t P_p - \sigma_n^r v n p_t, \qquad (5)$$

для нейтральных ловушек

$$\frac{\partial p_t^0}{\partial t} = -\sigma_p v p p_t^0 + p_t P_p + \sigma_n^r v n p_t.$$
(6)

Учитывая, что $p_t^0 = N_p - p_t$, и подставляя p_t^0 в (5), а также складывая уравнения (5) и (6), можно получить другие, более близкие по форме к (1)–(3) уравнения для эволюции p_t и N_p , которые далее будут использоваться в расчетах:

$$\frac{\partial p_t}{\partial t} - \frac{\partial}{\partial x} J_p = \sigma_p v p (N_p - p_t) - p_t P_p - \sigma_n^r v n p_t, \quad (7)$$

$$\frac{\partial}{\partial t}N_p = \frac{\partial}{\partial x}J_p.$$
(8)

Чтобы учесть неоднородное электрическое поле в диэлектрике, вводится уравнение Пуассона [1–3]:

$$\frac{\partial F}{\partial x} = -\frac{\partial^2 U}{\partial x^2} = e \frac{(n_t + n - p_t - p)}{\varepsilon \varepsilon_0},\tag{9}$$

где U – потенциал, e – заряд электрона, ε_0 – электрическая постоянная, ε – низкочастотная диэлектрическая проницаемость. За исключением σ_n , σ_n^r , σ_p , σ_p^r , N_n все вышеуказанные переменные являются функциями координаты и времени.

Часто, и в настоящей работе в том числе, для описания вероятностей ионизации P_n и P_p используют модель многофононной ионизации ловушек [17], которая показала хорошее согласие с экспериментом [1–3]. В рамках этой модели вероятность ионизации ловушки дается выражением

$$P = \sum_{n=-\infty}^{+\infty} \exp\left[\frac{nW_{\rm ph}}{2kT} - S \coth\frac{W_{\rm ph}}{2kT}\right] \times \\ \times I_n \left(\frac{S}{\sinh(W_{\rm ph}/2kT)}\right) P_i(W_t + nW_{\rm ph}),$$

$$P_i(W) = \frac{eF}{2\sqrt{2m^*W}} \exp\left(-\frac{4}{3}\frac{\sqrt{2m^*}}{\hbar eF}W^{3/2}\right),$$

$$S = \frac{W_{\rm opt} - W_t}{W_t},$$
(10)

где W_t , W_{opt} – термическая и оптическая энергия ионизации ловушки соответственно, W_{ph} – энергия фонона, m^* – эффективная масса носителя, T – температура, k – постоянная Больцмана. Из уравнения (10) следует, что время жизни ловушки с захваченной дыркой $\tau \sim 1/P$. В электрическом поле ловушка после захвата дырки успеет переместиться на расстояние

$$L = \tau \mu F \sim \mu F / P, \tag{11}$$

которое будет экспоненциально уменьшаться с увеличением F.

Для (9) граничным условием является значение поляризующего импульса напряжения (U_p) . Для инжекционных токов из Si-подложки $(j_{\rm Si}^{\rm inj})$ или металла $(j_{\rm M}^{\rm inj})$ наиболее часто (и в данной работе) используют механизм Фаулера–Нордгейма, откуда следуют граничные условия для (1), (2) – n(0,t) и p(0,t) в зависимости от полярности U_p : $j_{\rm Si}^{\rm inj}/ev$ или $j_{\rm M}^{\rm inj}/ev$.

3. Влияние переноса ловушек на проводимость Si₃N₄. Описание эксперимента [16]. В работе [16] экспериментально, при комнатной температуре, изучались зависимости тока j от среднего электрического поля $\bar{F} = U_p/d$, где d – толщина пленки Si₃N₄, в структурах Кремний–Нитрид кремния– Металл (КНМ). В КНМ-структурах использовали пленки Si₃N₄ различной толщины d = 22-310 нм. По истечению 2 мин после воздействия U_p , в КНМструктурах измеряли электрический ток (рис. 1, толстые линии). Здесь для сопоставления эксперимента

Письма в ЖЭТФ том 105 вып. 9-10 2017

Рис. 1. Сравнение зависимостей плотностей тока J от среднего электрического поля \bar{F} в КНМ-структурах при положительном потенциале на металлах Au, Al. Толстые линии – эксперимент [16], тонкие – расчет, выполненный для следующих параметров ловушек: $W_t = 1.6$ эВ, $W_{\rm opt} = 3.2$ эВ, $W_{\rm ph} = 0.06$ эВ, $N_{\rm ini} = 3.2 \cdot 10^{20}$ см⁻³, $\sigma = 2 \cdot 10^{-15}$ см². Расчеты 1, 2 выполнены без учета перемещения ловушек в Si₃N₄; 3, 4 - c учетом дрейфа и диффузии ловушек в Si₃N₄; 3, $5 \cdot 10^{-15}$ см²/(B·c), $D = 1.2 \cdot 10^{-16}$ см²/с, $N_{\rm min} = 8.5 \cdot 10^{-19}$ см⁻³. Увеличение среднего электрического поля в КНМ-структурах на 1 MB/см происходило через каждые 2 мин

с расчетом использована плотность тока J = j/S, где $S = 1.27 \cdot 10^{-2} \,\mathrm{cm}^2, \, j$ – электрический ток [16]. После этого происходило увеличение электрического поля на 1 МВ/см [16]. Процедуру "увеличение электрического поля – измерение" повторяли в диапазоне полей от 2 до 5 МВ/см (см. рис. 1). Благодаря использованию в данной работе металлов Au и Al с работой выхода для электронов 5 и 4 эВ соответственно, удалось контролировать инжекцию электронов и дырок в КНМ-структурах при заданной полярности на металле. Экспериментально [16] было установлено, что при положительном потенциале на золотом контакте (+Au), проводимость в тонких пленках Si_3N_4 (22 нм) увеличивалась (примерно на два порядка) по сравнению с +Al (см. рис. 1). Исключительная роль дырок в проводимости $\mathrm{Si}_3\mathrm{N}_4$ также была отмечена в других работах [18, 19].

Письма в ЖЭТФ том 105 вып. 9-10 2017

Описание расчета. На рис. 2 изображена энергетическая диаграмма КНМ-структуры при поло-

Рис. 2. Энергетическая диаграмма КНМ-структуры при положительном потенциале на Au, j_n , j_p , J_p – потоки электронов, дырок и дырочных ловушек соответственно

жительном потенциале на металлическом электроде (Au). Барьер для дырок на границе Si₃N₄/Au coставляет 1.6 \Rightarrow B (см. рис. 2), а на границе Si₃N₄/Al – 2.5 эВ [20]. В настоящей работе будем предполагать, что подвижность и коэффициент диффузии ловушек имеют постоянные значения в заданном диапазоне электрических полей, ловушки могут перемещаться только внутри пленки Si₃N₄, а электронные и дырочные ловушки имеют одну и туже природу (Si-Si связь [11]) и имеют одинаковые параметры [3]: W_t , $W_{\mathrm{opt}}, W_{\mathrm{ph}}, \sigma_p = \sigma_n = \sigma, N_p = N_n = N,$ в начальный момент времени $N=N_{\rm ini},$ где $N_{\rm ini}$ – начальная концентрация ловушек, $\sigma_n^r=\sigma_p^r=5\cdot10^{-13}\,{\rm cm}^2$ [1–3]. Для ограничения перемещения p_t в пленке Si_3N_4 вводится дополнительный параметр N_{min}. Смысл параметра N_{\min} состоит в том, что он определяет минимально возможную концентрацию ловушек в Si₃N₄ и, возможно, характеризуется природой химической связи атомов в диэлектрике. Перенос ловушек из какойлибо области пленки Si₃N₄ прекращается, если в этой области концентрация N становится меньше N_{\min} . При расчете тока Фаулера-Нордгейма за время действия U_p пренебрегали изменением состава пленки в Si_3N_4 , на границах Si_3N_4/Si и $Si_3N_4/Au(Al)$. Для vи $\varepsilon_{\rm SiN}$ использовались величины $10^7 \, {\rm cm/c}$ и 7.5 соответственно [1–3].

Сравнение эксперимента с расчетом для толстых (310 нм) пленок Si₃N₄. На рис. 1 (кружочки) показаны экспериментальные зависимости $J(\bar{F})$ из [16] и их расчет (1, 2) для КНМ-структур с толстым (310 нм) слоем Si₃N₄. На этом этапе предполагали, что эффекты перемещения ловушек не дают существенного вклада в расчет, и их не учитывали.

Наилучшее согласие с экспериментом для высоких электрических полей (более 4 MB/см) получено при следующих параметрах ловушек: $W_t = 1.6$ эВ, $W_{\rm opt} = 3.2$ эВ, $W_{\rm ph} = 0.06$ эВ, $N_{\rm ini} = 3.2 \cdot 10^{20}$ см⁻³, $\sigma = 2 \cdot 10^{-15}$ см².

В слабых электрических полях (менее 4 MB/см) расчеты неудовлетворительно согласуются с экспериментом, и, возможно, это связано с необходимостью учитывать инжекцию носителей из контактов не в разрешенную зону (механизм Фаулера– Нордгейма), а на ловушки в запрещенной зоне диэлектрика [21].

Сравнение эксперимента с расчетом для тонких (22 нм) пленок Si₃N₄. Расчет для КНМ-структур с тонким (22 нм) слоем Si₃N₄, с параметрами из предыдущего расчета, без учета дрейфа и диффузии ловушек, показал что увеличение проводимости при +Au по сравнению с +Al происходит примерно в восемь раз. В эксперименте [16] увеличение проводимости при +Au по сравнению с +Al в КНМ-структурах происходило примерно в сто раз (см. рис. 1). В настоящей работе такое увеличение проводимости связывается с дырочно-стимулированным переносом ловушек. На рис. 1 тонкими линиями 3 и 4 показаны расчетные $J(\bar{F})$ зависимости с учетом дрейфа и диффузии ловушек в КНМ-структурах с +Al и +Au соответственно. Здесь наряду с параметрами ловушек, определенными в предыдущем расчете, вводятся дополнительные: $\mu = 3 \cdot 10^{-15} \, \mathrm{cm}^2 / (\mathrm{B} \cdot \mathrm{c}), \ D =$ $= 1.2 \cdot 10^{-16} \,\mathrm{cm}^2/\mathrm{c}, N_{\min} = 8.5 \cdot 10^{19} \,\mathrm{cm}^{-3}.$ На рис. 3 показаны распределения в пленке Si₃N₄ при +Au, через двухминутные промежутки времени: (a) – N, $(b) - n_t$ и p_t , (c) - F. Так как внешнее электрическое поле возрастает со временем, то оно всегда превосходит поле, создаваемое p_t и n_t . Поэтому направление дрейфового потока p_t не изменяется со временем. В то же время направление диффузионной составляющей потока p_t зависит от градиента p_t. Как показывает расчет, в слабых электрических полях (менее 2 МВ/см) перемещение дырочных ловушек вглубь пленки Si₃N₄ является значительным (кривая 2 на рис. 3b). В сильных электрических полях (более 2 MB/cm) смещение p_t вглубь пленки Si₃N₄ является небольшим (11), поскольку ловушки с захваченными дырками от места их скопления (пик K1 на рис. 3b) из области низких электрических полей (кривые 3, 4 на рис. 3с) перемещаются в область высоких электрических полей, в которых велика вероятность выброса дырки из ловушки. Этот процесс "захват дырки" – "смещение ловушки" – "выброс дырки" вызы-

Рис. 3. Расчет распределений в Si₃N₄ через промежутки времени (2 мин) после увеличения среднего электрического поля на 1 MB/см в КНМ-структуре общей концентрации N ловушек (а), ловушек с захваченными электронами 1', 2', 3', 4' – n_t и дырками 1, 2, 3, 4 – p_t (b) и электрического поля F (c). Параметры ловушек в Si₃N₄: $W_t = 1.6$ эВ, $W_{opt} = 3.2$ эВ, $W_{ph} = 0.06$ эВ, $N_{ini} =$ $3.2 \cdot 10^{20}$ см⁻³, $\sigma = 2 \cdot 10^{-15}$ см², $\mu = 3 \cdot 10^{-15}$ см²/(В·с), $D = 1.2 \cdot 10^{-16}$ см²/с, $N_{min} = 8.5 \cdot 10^{-19}$ см⁻³. В качестве металла в КНМ-структуре использовано Au, толщина Si₃N₄ – 22 нм. Нуль по оси x соответствует границе Si/Si₃N₄

вает возрастание N в глубине пленки Si₃N₄ (кривые 3, 4 на рис. 3а). В свою очередь, рост N вызывает увеличение захвата в этой области дырок (пик K2на рис. 3b). Увеличение электрического поля вблизи границ Si/Si₃N₄ и Si₃N₄/Au за счет смещения пика K2 на величину Δx (Δx – расстояние от пика K2 до границы Si₃N₄/Au) составляет

$$\Delta F_{\mathrm{Si}/\mathrm{Si}_{3}\mathrm{N}_{4}} = \bar{F} + 2F_{K2}(\Delta x/d),$$

$$\Delta F_{\mathrm{Si}_{3}\mathrm{N}_{4}/\mathrm{Au}} = \bar{F} + 2F_{K2}(\Delta x/d - 1),$$

Письма в ЖЭТФ том 105 вып. 9-10 2017

4. D.S. Jeong, H. Schroeder, and R. Waser, Phys. Rev. B **79**, 195317 (2009).

- 5. J.-H. Hur, K. M. Kim, M. Chang, S.R. Lee, D. Lee, C.B. Lee, M.-J. Lee, Y.-B. Kim, C.-J. Kim, and U.-I. Chung, Nanotechnology 23, 225702 (2012).
- 6. J.-H. Hur, M.-J. Lee, C.B. Lee, Y.B. Kim, and C. J. Kim, Phys. Rev. B 82, 155321 (2010).
- 7. C. Hu, Q. Wang, S. Bai, M. Xu, D. He, D. Lyu, and J. Qi, Appl. Phys. Lett. **110**, 073501 (2017).
- 8. N. Capron, P. Broqvist, and A. Pasquarello, Appl. Phys. Lett. 91, 192905 (2007).
- 9. S. Asanuma, H. Akoh, H. Yamada, and A. Sawa, Phys. Rev. B 80, 235113 (2009).
- 10. J.S. Lee, S. Lee, and T.W. Noh, Appl. Phys. Rev. 2, 031303 (2015).
- 11. V.A. Gritsenko, T.V. Perevalov, O.M. Orlov, and G. Ya. Krasnikov, Appl. Phys. Lett. 109, 062904 (2016).
- 12. H. H. Pham and L.-W. Wang, Phys. Chem. Chem. Phys. 17, 541 (2015).
- 13. M. Kaviani, J. Strand, V. V. Afanas'ev, and A.L. Shluger, Phys. Rev. B 94, 020103 (2016).
- 14. C. Gionco, S. Livraghi, S. Maurelli, E. Giamello,. S. Tosoni, V.C. Di, and G. Pacchioni, Chem. Mater **27**(11), 3936 (2015).
- 15. W. Zhang, W.-Z. Chen, J.-Y. Sun, and Z.-Y. Jiang, Chin. Phys. B 22, 016601 (2013).
- 16. D. J. DiMAria and P. C. Arnett, IBM J. Research and Development 21, 227 (1977).
- 17. S.S. Makram-Ebeid and M. Lannoo, Phys. Rev. B 25, 6406 (1982).
- 18. Z. A. Weinberg, Appl. Phys. Lett. 29, 617 (1976).
- 19. B. H. Yun, Appl. Phys. Lett. 27, 256 (1975).
- 20. V.A. Gritsenko, E.E. Meerson, and Yu.N. Morokov, Phys. Rev. B 57, R2081 (1997).
- 21. К.А. Насыров, С.С. Шаймеев, В.А. Гриценко, Дж. Х. Хан, С. В. Ким, Дж.-В. Ли, ЖЭТФ **129**, 926 (2006).

где F_{K2} – электрическое поле, создаваемое пиком K2(см. рис. 3b). Следовательно, $F_{\rm Si_3N_4} > F_{\rm Si_3N_4/Au}$ (см. рис. 3с). Постепенное увеличение со временем Δx , связанное с дрейфом ловушек, приводит к увеличению электрического поля на границах Si/Si₃N₄ и Si₃N₄/Au и к возрастанию инжекционных токов. Именно этот факт объясняет увеличение проводимости (тока) в тонких пленках (22 нм) Si₃N₄ при +Au по сравнению с +Al (см. рис. 1).

Дырочно-стимулированный перенос ловушек в диэлектриках

Наиболее критичным параметром в расчетах является N_{min}. Если этот параметр выбрать гораздо меньше $8.5 \cdot 10^{-19} \, \text{см}^{-3}$, то в сильных электрических полях (5 МВ/см) по истечении времени воздействия U_{n} пик K1 (см. рис. 3b) будет практически отсутствовать; в то же время, пик К2 будет значительно больше. Такую ситуацию можно сравнить с эффектом "положительной обратной связи" из электротехники, приводящей к резкому возрастанию электрического тока в цепи и "пробою" диэлектрика.

4. Заключение. В работе предложен дырочностимулированный механизм переноса ловушек в диэлектриках. Рассмотренный механизм позволяет объяснять увеличение проводимости в диэлектрических пленках, если в переносе заряда участвуют дырки. Сопоставление эксперимента из работы [16] с расчетом позволило определить подвижность ловушек с захваченными дырками в Si_3N_4 , которая составила $3 \cdot 10^{-15} \, \text{см}^2 / (\text{c} \cdot \text{B}).$

- 1. Ю. Н. Новиков, В. А. Гриценко, К. А. Насыров, Письма в ЖЭТФ 89, 599 (2009).
- 2. К.А. Насыров, Ю.Н. Новиков, В.А. Гриценко, С.Ю. Юнс, Ч.В. Ким, Письма в ЖЭТФ 77, 455 (2003).
- 3. Yu. N. Novikov, J. Appl. Phys. 117, 154103 (2015).