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Four-form field versus fundamental scalar field
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The discrepancy between the observed almost zero

value of the vacuum energy and its estimation in terms

of the zero point energy of fermionic and bosonic quan-

tum fields provides the cosmological constant problem.

Most plausibly the huge discrepancy of about 120 orders

is the result of the naive estimations, which have been

based on low-energy effective field theory. In a full equi-

librium the huge contribution of the zero point motion

is completely cancelled by the microscopic (correspond-

ingly trans-Planckian) degrees of freedom.

The quantum vacuum can be described in terms of

their own effective macroscopic variables, which do not

depend much on the detailed microscopic structure of

the system, such macroscopic approach is represented

by the so-called q-theory [1–3].

The particular useful choice for the vacuum variable

is the 4-form field strength F = ∗(dA3) [4–9], where A3

is the 3-form gauge field. Such choice satisfies all the

requirements needed for the description of the quantum

vacuum, especially if instead of the quadratic form in

the F -field, one uses the general function of the scalar

F . The main difference of this form of the q-theory from

the theory of the conventional scalar field is that A3 is

treated as the independent variable instead of the scalar

F . This introduces an integration constant to the equa-

tions of motion, which serves as the analog of the chem-

ical potential µ in condensed matter with conserved

charge. As in the condensed matter, the parameter µ

is self-tuned to nullify the proper thermodynamic po-

tential, which enters the Einstein equations as the cos-

mological constant.

Later it became clear that the q-theory must be ex-

tended to include the derivatives of the q-field. The ex-

tension of the q-theory with the derivatives of the q-field

was used to demonstrate that the oscillations of the q-

field during cosmological evolution produce the kind of

dark matter [10, 11], and thus the q-field is in the origin

of both the dark energy and dark matter.
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This extension is also important for the considera-

tion of the q-ball [12] and the interfaces between the

vacua with the same energy. Such interfaces take place

if the Universe obeys the so-called multiple point prin-

ciple [13–17], according to which the Universe is at the

coexistence point, where different vacua have the same

energy density.

In this current paper we present the complete form

of the Einstein and Maxwell equations following from

the extended q-theory, which includes both the depen-

dence of the gravitational Newton constant on the field

strength F and the gradient terms. The latter gives in

particular the platform to study the structure of the

black hole singularity, which is regularized by the q-field.

The action for the 4-form field interacting with the

gravitational field has the following form (~ = c = 1):

S = −

∫

R4

d4x
√

|g|

(

R

16πG(F )
+ ǫ(F )+ (1a)

+
1

8
K(F )∇αF 2 ∇αF

2 + LSM

)

, (1b)

Fκλµν ≡ ∇[κAλµν], F 2 ≡ −
1

4!
FκλµνF

κλµν (1c)

Fκλµν = F
√

|g| eκλµν , Fκλµν = Feκλµν/
√

|g|, (1d)

∇µ denotes a covariant derivative and a square

bracket around spacetime indices complete anti-

symmetrization, ∇αF 2 ∇αF
2 is gαβ ∇βF

2 ∇αF
2,

K(F ) is some factor depending on F only (here not

on its derivatives), LSM is the Lagrange density of

the fields of the standard model (SM) of elementary

particle physics. Throughout, we use natural units with

c = ~ = 1 and take the metric signature (−+++).

Variation over Aλµν gives the Maxwell equations:

∇κ

(

R

16π

dG−1(F )

dF
+

dǫ(F )

dF
+

+
1

8

dK(F )

dF
∂αF 2∂αF

2 −
1

2
F∇α

(

K(F )∂αF
2
)

)

= 0.(2)

From Maxwell Eq. (2) we get
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R

16π
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dF
+

dǫ(F )

dF
+

1

8
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∂αF 2∂αF

2 −

−
1

2
F∇α

(

K(F )∂αF
2
)

= µ, (3)

where µ is the integration constant. It is convenient to

set

C(F ) = F 2K(F ), (4)

which gives for Maxwell equations:

R

16π

dG−1(F )

dF
+

dǫ(F )

dF
−

1

2

dC(F )

dF
∂αF∂αF −

− C(F )�F = µ. (5)

Variation over the metric gµν gives the generalized Ein-

stein equations:
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1
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)
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−
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1
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F
dC(F )
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∇αF∇αFgµν +

+ C(F )∇µF∇νF − C(F )�Fgµν + T (SM)
µν = 0, (6)

which can be simplified using Eq. (5):

1

8πG(F )

(

Rµν −
1

2
Rgµν

)

+

+
1

8π

(

∇µ∇νG
−1(F )− gµν�G−1(F )

)

−

− (ǫ(F )− µF ) gµν −
1

2
C(F )gµν∇αF∇αF +

+ C(F )∇µF∇νF + T (SM)
µν = 0. (7)

For the constant gravitational coupling G(F ) these

equations are reduced to the corresponding equation in

the article [10].

The Einstein equation (7) shows that the contri-

bution of the 4-form field to the gravitating energy-

momentum tensor is given by

T
(F )
αβ =

(

C(F )∇αF∇βF −
1

2
gαβC(F )∇µF∇µF

)

−

− gαβ (ǫ(F )− µF ) . (8)

There are two faces of the 4-form field, as follows

from Eq. (8): it has the signature of the (pseudo)scalar

field and the signature of the conserved quantity, which

characterizes the deep quantum vacuum. The former

leads to the effective dark matter, while the latter con-

tributes to dark energy. Since the scalar F is not the fun-

damental scalar, but is the field strength of the 3-form

gauge field, the contribution to the vacuum energy from

the F -field, ǫ(F )−µF , contains the integration constant

µ, which serves as the analog of the chemical potential

in condensed matter systems with conserved charge.

The obtained equations are applicable for different

problems such as: (i) relaxation of the vacuum energy

in the expanding Universe; (ii) the internal structure of

the black hole including the structure of the singular-

ity; (iii) investigation of topological and non-topological

objects; etc.
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