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Calogero-Sutherland system with two types interacting spins
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The Calogero-Sutherland (CS) model [1–4] describes

one-dimensional system of interacting pairwise particles

through long range potentials. It has a lot of applica-

tions, in particular with the quantum Hall effect [5],

matrix models [6], and orthogonal polynomials [7]. In

this paper we consider the classical case. The classi-

cal CS model is an integrable system in the Liouville

sense. Moreover, it remains integrable if one adds the

so-called spin variables. The resulting system has form

of the Euler–Arnold SL(N) top with the inertia tensor

depending on the positions of interacting particles [8, 9].

Denote the coordinates of the particles

u = (u1, . . . , uN ), their momenta v = (v1, . . . , vN )

and the spin variables {Sjk} arranged into matrix

S =
∑N

ij EijSij (here {Eij} is the standard basis

in Mat(N), i.e. (Eij)ab = δiaδbj ). The latter is an

element of the Lie algebra sl(N). The spin CS model is

described by the Hamiltonian

HCS =
1

2

N∑

j=1

v2j −
∑

j<k

SjkSkj

sinh2(uj − uk)
. (1)

The Poisson brackets between positions of particles and

momenta are canonical {vk, uj} = δjk, while the Pois-

son structure for {Sjk, Smn} is given by the Dirac brack-

ets. They can be obtained starting from the Lie–Poisson

brackets on the Lie coalgebra sl∗(N) after imposing

constraints Sdiag = 0 (and some gauge fixation) re-

sulting from the coadjoint action of the diagonal sub-

group of SL(N) on the spin variables S. The case when

S ∈ SO(N) is known as well [10]. Some further general-

izations can be found in [11].
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Our generalization of (1) is as follows:

H =
1

2

N∑

j=1

v2j +
∑

j<k

S2
jk + T 2

jk − 2SjkTjk cosh(uj − uk)

sinh2(uj − uk)
,

(2)

where Sij , Tij are elements of antisymmetric matrices

S and T (Sjk = −Skj , Tjk = −Tkj) with the Lie–

Poisson brackets on the direct sum of two Lie coalgebras

so∗(N)⊕ so∗(N):

{Sij , Skl} = −
1

2
(Silδkj − Skjδil − Sikδlj + Sljδik),

{Tij , Tkl} =
1

2
(Tilδkj − Tkjδil − Tikδlj + Tljδik),

{Sij , Tkl} = 0.

(3)

The phase space R
2N−2 ×OSO(N) ×OSO(N) consists of

R
2N−2 parameterized by momenta and positions of N

particles in the center of mass frame and two coadjoint

orbits OSO(N). Each orbit is obtained from so∗(N) by

fixation of the Casimir functions (i.e. the eigenvalues

of matrices S and T ). The Poisson structure (3) keeps

the same form on OSO(N) × OSO(N). The dimension of

generic SO(N) orbit Equals2) (1/2)(N2 − N) − [N/2].

Therefore, the dimension of the total phase space is

(N − 1)(N + 2)− 2[N/2].

For N = 2 the Lie algebra so(2) is commutative and

the spin variables are fixed. In this case we obtain from

(2) the Hamiltonian with two constants

H =
v2

2
+

m2
1 +m2

2 − 2m1m2 cosh(2u)

sinh2(2u)
, (4)

which reproduces the CS model of the BC1 type [3, 4].

2)[x] stands for integer part of x.
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We prove that there exists (1/2)(N − 1)(N + 2) −

− [N/2] independent integrals of motion in involution,

and the Hamiltonian (2) is one of them. To this end we

construct the Lax pair and the classical r-matrix. Sim-

ilarly to SO(N) version of (1) [10] (and in contrast to

the SL(N) spin CS system) the M -operator can be ex-

plicitly constructed because the spin variables S, T are

skew-symmetric matrices, and the additional reduction

is not needed.

We derive the generalized CS system (GCS) using

the Hitchin approach [12, 13]. The Lax operator of in-

tegrable system satisfies the Hitchin equations. They

come from the self-duality equations in four dimen-

sions after their reduction to two dimensional Riemann

surface. Namely, instead of R
4 one consider the four-

dimensional space R
2×Σ, where Σ plays the role of the

base spectral curve. The field content of the Hitchin sys-

tem comes from the four-dimensional vector-potentials

independent on the first two coordinates. One of them

is the Higgs field that plays the role of the Lax operator

of the integrable system. The coordinates of particles

describe the moduli of solutions of the Hitchin equa-

tions, while the spin variables are the residues of the

Higgs fields at the singular points. On Fig. 1 and Fig. 2

(see the full text) the base spectral curves Σ of CS and

GCS systems are depicted. The Hitchin systems on sin-

gular curve (and, in particular, CS system) were studied

previously in [14, 15].

Another important ingredient of the our construc-

tion is the so-called quasi-compact structure of the

gauge group. It means that the gauge transformations

at the singular points on the base spectral curve are

reduced to the unitary group3). We will come to this

structure in relation to integrable systems elsewhere. As

a result the spin variables become elements of the uni-

tary algebra SU(N). To come to the integrable case we

further reduce them to the orthogonal algebra SO(N).

Full text of the paper is published in JETP Letters

journal. DOI: 10.1134/S0021364017150024
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3)In the standard approach to the Hitchin systems the gauge

group may have the quasi-parabolic structure, i.e. the gauge group

is reduced at singular points to the triangular subgroup.
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