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The wide-ranging applications of amorphous silicon

(a-Si) are attracting considerable attention from struc-

tural researchers [1–6]. Considering that the macro-

scopic properties of Si are mainly determined by its

microstructures, detailed structural information at the

atomic level during its formation processes must be ob-

tained. Although many structural models of liquid Si

(l-Si) and a-Si have been established [7–10], adequate

identification of the realistic structural features of a-Si

remains difficult [11, 12].

Computer simulations are powerful tools for under-

standing the role of a short-range order in a disordered

network. The two- and three-body empirical Stillinger–

Weber (SW) potential [13], the Tersoff empirical model

potential [14, 15], as well as the two- and three-body

classical inter-atomic potentials of Biswas and Hamann

[16] have been proposed to describe the interaction be-

tween atoms in l-Si and a-Si in computer simulations.

Among them, the Stillinger–Weber potential is widely

used for l-Si and a-Si simulations [13, 17, 18].

Accurate methods are needed for the quantitative

clarification of microstructures. Many structural anal-

ysis methods exist, such as the Bernal polyhedron

[19], Honeycutt–Andersen index[20], Cluster Type In-

dex method [21, 22], and Voronoi polyhedron method

[23, 24]. Voronoi polyhedron index is introduced to de-

scribe the microstructures during cooling process of Si,

because this model can provide a better representation

on the nearest-neighbor shell of l-Si, a-Si and crystalline

Si (c-Si).

The previous researches pay more attentions on the

crystallization [25–27], the network structures [28, 29],

and the nanoparticles of a-Si [30]. In this paper, we

mainly focus on the structural properties and evolutions

of nanocluster in Si at the atomic level during its rapid

quenching process and this work helps understand a-Si

networks and the stacking model of polyhedron in l-Si.
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In this study, l-Si and a-Si are simulated by MD

simulation techniques using the SW potential [18]. MD

simulation was carried out in a cubic box under peri-

odic boundary conditions with 8000 Si particles by using

LAMMPS [31]. The simulations were performed in the

NPT ensemble with zero pressure and the time step of

1.0 fs. First, the system runs 40000 time steps at 2700 K

to guarantee an equilibrium liquid state. Then, the tem-

perature gradually decreases to 200 K with a cooling

rate of 1012 K/s. The configurations were recorded with

intervals of 100 K during the quenching process. The

RDF and Voronoi polyhedron method were used to an-

alyze the structures of l-Si and a-Si.

The a-Si formed around 800 K and short-range struc-

tures have been enhanced during solidification. The

〈2 3 0 0〉 and 〈4 0 0 0〉 polyhedrons are two important

polyhedrons in Si during the quenching process. They

affect the local structures by their different positions

and connection modes. However, others such as 〈0 6 0 0〉,

〈2 2 2 0〉, and 〈0 5 2 0〉 can maintain their structures only

at high temperatures and are very rare at low tempera-

tures.

The 〈0 6 0 0〉, 〈2 2 2 0〉, and 〈0 5 2 0〉 polyhedrons tend

to be transform into the 〈4 0 0 0〉 and 〈2 3 0 0〉 polyhe-

drons. The 〈4 0 0 0〉 polyhedrons can link with others to

form nanoclusters. Tetrahedrons often tend to involve

distortion connections and deviate from the ideal po-

sition. The different connection modes of polyhedrons

determine the variety of the local structures in amor-

phous and liquid Si.

Fig. 1 shows that the cluster tends to be regular, al-

though this cluster is slightly distorted. This nanoclus-

ter involves five 〈2 3 0 0〉 and seventeen 〈4 0 0 0〉 polyhe-

drons. Although a large number of 〈4 0 0 0〉 polyhedrons

emerge in this cluster, the neighboring atoms deviate

from the ideal position. The 〈2 3 0 0〉 polyhedron has five

neighboring atoms that destroy the translational sym-

metry of the crystal structure. During the crystallization

process, atoms need a certain time to adjust their own

positions and achieve the ideal lattice position. Conse-
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Fig. 1. (Color online) A nanocluster with their Voronoi

polyhedron index in Si at 200 K. (a) – Crystalline Si clus-

ter, (b) – cluster and its neighbors

quently, this crystal cluster cannot evolve to a crystal

structure because of the high cooling rate of 1012 K/s.

Full text of the paper is published in JETP Letters

journal. DOI: 10.1134/S0021364017220015
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