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The observation of a narrow structure at W ∼

∼ 1.68GeV in the γn → ηn excitation function at

GRAAL, CBELSA/TAPS, LNS and A2@MAMI C [1–

9] and in Compton scattering on the neutron γn →

γn [10] (the so-called “neutron anomaly”), and two nar-

row structures at W ∼ 1.68GeV and W ∼ 1.72GeV

in Compton scattering on the proton [11], in the pre-

cise data for the γn → ηn [12] and π−p → π−p [13]

reactions may signal the existence of one (N(1685)) or

two (N(1685) and N(1726)) narrow nucleon resonances

[14–19].

On the other hand, there are alternative interpreta-

tions of the “neutron anomaly” in terms of the specific

interference of known wide resonances [20–24] or as the

sub-threshold meson-nucleon production (cusp) [25, 26].

Although being questionable [27], the first assumption

is widely discussed in literature.

The decisive identification of these experimental

findings is a challenge for both theory and experi-

ment. In the previous experiments the possible signal of

N(1685) was observed in so-called “formation” reactions

in which the incoming particle interacts with the tar-

get nucleon and excites resonances. If N(1685) does re-

ally exist, its signal should also be seen in multi-particle

“production” reactions in which it would manifest itself

as a peak in the invariant mass spectra of the final-state

products. Possible reactions could be γN → πηN .

In this Letter, we report on the study of the γp →

→ π0ηp, γp → π+ηn, γn → π0ηn, and γn → π−ηp re-

actions using the data collected at the GRAAL facil-

ity [28].

Photons from η → 2γ and π0 → 2γ decays and

charged pions were detected in the BGO Ball. The re-

coil protons and neutrons emitted at forward angles

θlab ≤ 25◦ were detected in the assembly of forward
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detectors. It consisted of two planar wire chambers, a

thin scintillator hodoscope and a lead-scintillator wall.

At the first step of the data analysis η and π0 mesons

were identified by means of the invariant masses of two

properly chosen photons. Then the cuts on the proton

and η missing masses were applied.

At the second stage of the data analysis the cuts on

the coplanarity and on the differences between the miss-

ing and invariant masses assuming two-body reactions

with one real particle and one “effective” two-particle in

the final state were imposed.

Given the goal of this work, only the events in the

range of the energy of the incoming photon Eγ =

= 1.4 − 1.5GeV were selected for the further analy-

sis. The lower limit of 1.4GeV is close to the γN →

πN(1685) threshold. The upper value 1.5GeV is the

limit of the GRAAL beam and it also allows to avoid

the contribution from higher-lying resonances. To elim-

inate the contamination of γN → η∆ events, the cuts

on the invariant mass 1.12 ≤ IM(πN) ≤ 1.22GeV and

the missing mass MM(γ, η) ≤ 1.22GeV were applied.

Fig. 1 shows the obtained M(ηN) spectrum (the sum

of all reactions under study). There is a well pronounced

peak at ∼ 1.68GeV. The Gaussian+3-order polynomial

(signal-plus-background) fit results in the χ-square of

23.9/23. The fit by 3-order polynomial (background)

gives the χ-square of 42.6/26. The log likelihood ratio

of these two hypotheses (
√

2 ln(LB+S/LB)) corresponds

to the confidence level of 4.6σ.

The extracted peak position is M = 1678± 0.8stat±

± 10syst MeV. The systematic uncertainty in the mass

position originates from the uncertainties in the cali-

bration of the GRAAL detector and tagger.

Our results support the existence of two narrow res-

onances, N+(1685) decaying, in particular, into ηp final

state, and N0(1685) with one possible decay into ηn

(i.e. the isospin-1/2 N(1685) resonance). It is unclear
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Fig. 1. Spectrum of extracted M(ηN) mass (sum of all

channels) with corrections

if the interference of known wide resonances [20–24] or

the cusp effect [25, 26] – two other hypotheses under

discussion – could explain these results.

Full text of the paper is published in JETP Letters

journal. DOI: 10.1134/S0021364017230023
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