Зарядовое распределение и сверхтонкие взаимодействия в мультиферроике CuFeO₂ по данным ЯМР ^{63,65}Cu

А. Г. Смольников⁺¹⁾, В. В. Оглобличев⁺, А. Ю. Гермов⁺, К. Н. Михалев⁺, А. Ф. Садыков⁺, Ю. В. Пискунов⁺, А. П. Геращенко⁺, А. Ю. Якубовский^{*}, М. А. Муфлихонова[#], С. Н. Барило[×], С. В. Ширяев[×]

+Институт физики металлов им. М.Н. Михеева УрО РАН, 620108 Екатеринбург, Россия

*Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия

[#]Уральский Федеральный Университет им. первого президента России Б.Н. Ельцина, 620002 Екатеринбург, Россия

[×]Институт физики твердого тела и полупроводников НАН Беларуси, 220072 Минск, Беларусь

Поступила в редакцию 27 ноября 2017 г. После переработки 4 декабря 2017 г.

Впервые методом ядерного магнитного резонанса (ЯМР) на ядрах ^{63,65}Cu исследован монокристалл CuFeO₂. Измерения проводились в области температур T = 100-350 K в магнитном поле H = 117 кЭ, приложенном вдоль различных кристаллографических направлений. Определены компоненты тензора градиента электрического поля и константы сверхтонких взаимодействий. Показано, что в переносе спиновой поляризации Fe \rightarrow Cu участвуют электроны 4s и 3d орбиталей меди. Сделаны оценки заселенностей этих орбиталей.

DOI: 10.7868/S0370274X18020133

1. Введение. Исследовательский интерес к делафосситу CuFeO₂ вызван наличием в данной системе магнитоэлектрических эффектов. Конкуренция обменных взаимодействий в CuFeO₂ приводит к спиновой фрустрации и возникновению различных магнитных структур, в том числе и несоизмеримых с периодом решетки. Одновременно с магнитным упорядочением в полях 60–130 кЭ в этой системе наблюдается электрическая поляризация, зависящая от приложенного внешнего магнитного поля [1–4].

В делафосситах AMO_2 с одинаковыми магнитоактивными ионами M^{3+} , но различными "немагнитными" ионами A^+ , наблюдаются различия в типах магнитных упорядочений [5,6], что свидетельствует о значительной роли ионов A^+ в обменных взаимодействиях и возникновении электрической поляризации.

Ионы Cu⁺ в кристаллической структуре CuFeO₂ расположены между двумя соседними плоскостями из ионов железа Fe³⁺ (рис. 1). Использование ядер 63,65 Cu в качестве ЯМР-зондов позволяет получать информацию о локальной зарядовой симметрии и механизмах спинового обмена между магнитными ионами Fe³⁺, находящимися в соседних плоскостях.

2. Образцы и методика эксперимента. Исследованный в данной работе образец CuFeO₂ пред-

Рис. 1. Фрагмент кристаллической структуры CuFeO₂ в двух проекциях и схема спинового обмена в цепочке Fe–O–Cu

ставлял собой монокристалл с размерами $2 \times 2 \times 1$ мм. Метод приготовления описан в работе [7]. Рентгеноструктурный анализ размолотых в порошок кристаллов показал, что CuFeO₂ имеет гексагональную кристаллическую структуру с симметрией $R\bar{3}m$ и параметрами элементарной ячейки a = 3.031(3) Å и c = 17.162(6) Å при комнатной температуре. Эти данные находятся в согласии с ранее полученными результатами структурных исследований [7].

Измерения ЯМР проводились на спектрометре Avance III 500 (фирма "Bruker") со сверхпроводящим

¹⁾e-mail: smolnikov@imp.uran.ru

магнитом H = 117 кЭ. Во всех экспериментах температура контролировалась двумя датчиками фирмы "Oxford Instruments" ITC 4/5, размещенными в криостате и в непосредственной близости от образца, с точностью до 0.5 К. Для исключения паразитных сигналов от металлической меди использовалась резонансная катушка, изготовленная из серебра.

Спектры ЯМР ^{63,65}Си были получены с использованием стандартной методики спинового эха $au_{\pi/2}$ – $t_{\rm del} - \tau_{\pi} - t_{\rm del}$ – эхо. Длительность первого импульса выбиралась $\tau_{\pi/2} = 1$ мкс, мощность РЧ-усилителя 250-300 Вт. Время повторения эксперимента составляло 10 мс. При записи спектров с шириной, большей полосы частот, возбуждаемой РЧ-импульсом, применялось суммирование массива сигналов, накопленных в требуемом частотном диапазоне с шагом 100 кГц. Наблюдение сигнала ЯМР на ^{63,65}Си в парамагнитной фазе CuFeO₂ затруднено очень короткими временами спин-спиновой релаксации $T_2 \approx 5$ мкс. Тем не менее, нам удалось впервые наблюдать ЯМР ^{63,65}Си в исследуемом соединении. Измерения ЯМРспектров проводились при задержке между импульсами $t_{del} = 8$ мкс.

Для расчета сдвига линий ЯМР использовалась программа моделирования спектров, численно рассчитывающая форму линии на основе полного гамильтониана ядерной системы с учетом зеемановского и квадрупольного вкладов [8–10].

Для измерения восприимчивости в интервале температур от 2 K до 300 K в магнитных полях с индукцией 50 кЭ применялся СКВИД-магнитометр MPMS фирмы "Quantum Design" (США). Измерения намагниченности были выполнены в центре коллективного пользования Института физики металлов.

3. Экспериментальные результаты. На рис. 2 представлены спектры ЯМР, полученные на монокристаллическом образце $CuFeO_2$ при $T = 300 \,\mathrm{K}$, во внешнем магнитном поле $H = 117 \,\mathrm{kS}$, приложенном вдоль трех ортогональных кристаллографических направлений. Спектры представляют из себя два набора линий, по три линии в каждом. Такая структура спектров обусловлена взаимодействием квадрупольного момента ядер ⁶³Cu и ⁶⁵Cu $(e^{63}Q = -0.220 \cdot 10^{-24} \,\mathrm{cm}^2, e^{65}Q = -0.195 \cdot 10^{-24} \,\mathrm{cm}^2)$ с градиентом электрического поля (ГЭП), создаваемым в месте расположения ядер их зарядовым окружением. При наличии такого взаимодействия для ядер со спином I = 3/2 должны наблюдаться три линии: центральная, соответствующая переходу $m_I =$ $-1/2 \leftrightarrow 1/2$, и два сателлита, соответствующих переходам $m_I = -3/2 \leftrightarrow -1/2$ и $m_I = 1/2 \leftrightarrow 3/2$ [11]. Разность резонансных частот центральной ли-

Рис. 2. Спектры ЯМР 63,65 Сu, полученные на монокристаллическом образце CuFeO₂ при T = 300 K, во внешнем магнитном поле H = 117 кЭ, приложенном вдоль трех ортогональных кристаллографических направлений

нии и сателлитов будет определяться компонентами тензора ГЭП V_{ij} (i, j = x, y, z). Тензор ГЭП является симметричным тензором второго ранга, в системе главных осей имеет диагональный вид и определяется тремя компонентами $|V_{zz}| \ge |V_{yy}| \ge |V_{xx}|$. Ориентационная зависимость спектров ЯМР, полученная на монокристалле, в отличие от спектров порошка, позволяет определить не только главное значение тензора ГЭП V_{zz} и параметр асимметрии $\eta = |(V_{xx} - V_{yy})|/V_{zz}$, но и направление главных осей по отношению к осям кристалла.

Как видно из рис. 2 разность резонансных частот центральной линии и сателлитов при направлении поля $H \parallel [001]$ в два раза больше, чем при $H \parallel [110]$ и $H \parallel [10]$, следовательно, тензор обладает аксиальной симметрией $|V_{xx}| = |V_{yy}| = |0.5V_{zz}|$ с параметром асимметрии $\eta \approx 0$. Главная ось ГЭП направлена вдоль оси *с* кристалла и определяет квадрупольную частоту: ${}^{63}\nu_Q = V_{zz}e^{63}Q/2h = 26.6(1)$ МГц, ${}^{65}Q = V_{zz}e^{65}Q/2h = 23.6(1)$ МГц, где h – постоянная Планка.

Поведение магнитной восприимчивости $\chi(T)$ в области температур 100–300 К изотропно (не зависит от ориентации образца относительно направления внешнего магнитного поля) и удовлетворительно описывается законом Кюри–Вейса:

$$\chi(T) = \chi_0 + \chi_s(T) = \chi_0 + C/(T - \Theta), \qquad (1)$$

где константа Кюри $C = 4.1(1) \operatorname{см}^3 \cdot \mathrm{K/r}$, температура Вейса $\Theta = -99(3) \operatorname{K}$, $\chi_0 = -7.0 \cdot 10^{-4} \operatorname{\Gammac} \operatorname{сm}^3$ /моль, $\mu_{\mathrm{eff}} = 5.8(1) \mu_{\mathrm{B}}$. Вблизи $T_{\mathrm{N1}} = 12.5 \operatorname{K}$ и $T_{\mathrm{N2}} = 9 \operatorname{K}$

происходит резкое изменение в поведении намагниченности, свидетельствующее о магнитных фазовых переходах с установлением в образце дальнего магнитного порядка. Все полученные данные хорошо согласуются с результатами, полученными в работе [2].

На рис. За представлены температурные зависимости магнитных (с учетом квадрупольных попра-

Рис. 3. Зависимости сдвига линии ЯМР $^{63}K(T)$ (a) и $^{63}K(\chi)$ (b) в монокристалле CuFeO₂ во внешнем поле приложенном вдоль трех ортогональных кристаллографических направлений. Прямые линии на (b) – результат аппроксимации данных

вок) сдвигов $K^{\alpha}(T)$ ($\alpha = [001]$, [110], $[\bar{1}10]$) линии ЯМР ⁶³Си в области парамагнитного состояния СиFeO₂ (при T = 100-350 К). Измерения $K^{\alpha}(T)$ были выполнены на ⁶³Си из-за более высокого природного содержания данного изотопа (⁶³Cu – 69%; ⁶⁵Cu – 31%). Сдвиги $K^{\alpha}(T)$ положительны, а их температурные зависимости повторяют поведение магнитной восприимчивости. Пропорциональность сдвигов и магнитной восприимчивости подтверждается $K - \chi$ диаграммами Джаккарино–Клогстона – рис. 3b [12].

Сдвиг линии ЯМР на ядре немагнитного иона подобно магнитной восприимчивости может быть представлен в виде:

$$K^{\alpha}(T) = K_0^{\alpha} + K_s^{\alpha}(T).$$
⁽²⁾

Зависимый от температуры спиновый вклад в сдвиг $K_s^{\alpha}(T)$ пропорционален спиновой части восприимчивости $\chi_s(T)$ и определяется константой сверхтонкого взаимодействия (СТВ) $A_{\rm bf}^{\alpha}$:

$$K_s^{\alpha}(T) = \frac{A_{\rm hf}^{\alpha}}{N_{\rm A}\mu_{\rm B}}\chi_s(T),\tag{3}$$

здесь $N_{\rm A}$ – число Авогадро, $\mu_{\rm B}$ – магнетон Бора. Аппроксимируя $K^{\alpha}(\chi)$ прямыми линиями и используя выражения (1)–(3), можно определить $A_{\rm hf}^{\alpha}$ и K_0^{α} [8,9,12]:

$$\begin{split} A_{\rm hf}^{[001]} &= 24.2\,\mathrm{\kappa}\Im/\mu_{\rm B}, \ A_{\rm hf}^{[110]} = A_{\rm hf}^{[\bar{1}10]} = 19.1\,\mathrm{\kappa}\Im/\mu_{\rm B}, \\ K_0^{[001]} &= K_0^{[110]} = K_0^{[\bar{1}10]} \approx 0. \end{split}$$

Из приведенных значений следует, что СТВ на ядрах меди в CuFeO₂ анизотропно. Для выяснения природы анизотропии СТВ был проведен анализ ориентационной зависимости $K(\theta)$ при T = 300 K, где θ – угол между направлением внешнего магнитного поля H и осью c кристалла (рис. 4). Поворот

Рис. 4. Ориентационная зависимость ${}^{63}K(\theta)$ в двух кристаллографических плоскостях при T = 300 К, θ – угол между направлением внешнего магнитного поля и осью *c* кристалла. Линия – результат аппроксимации данных функцией (6)

кристалла осуществлялся в двух плоскостях ($\overline{1}10$) и (110). Для наиболее точного определения направления внешнего магнитного поля H по отношению к осям кристалла использовались приведенные выше параметры тензора ГЭП [13].

4. Обсуждение. В общем случае константа СТВ определяется суммой изотропных и анизотропных вкладов:

$$A_{\rm hf}^{\alpha} = A_{\rm iso} + A_{\rm ani}^{\alpha} = A_{\rm c} + A_{\rm cp} + A_{\rm sd}^{\alpha} + A_{\rm so}^{\alpha} + A_{\rm dip}^{\alpha},$$
(4)

Письма в ЖЭТФ том 107 вып. 1-2 2018

где $A_{\rm c}$ и $A_{\rm cp}$ – изотропные константы контактного фермиевского и поляризации остова СТВ соответственно, $A_{\rm sd}^{\alpha}$ и $A_{\rm so}^{\alpha}$ – анизотропные константы спиндипольного и спин-орбитального СТВ с собственными электронами соответственно. К анизотропным также относится константа дипольного взаимодействия ядра с магнитными моментами соседних ионов $(A_{\rm dip}^{\alpha})$.

Константы дипольного взаимодействия $A_{\rm dip}^{\alpha}$ могут быть посчитаны [12]. В результате расчета было определено, что максимальное значение $A_{\rm dip,max} = A_{\rm dip}^{[001]} = 1.58(1) \, \text{к} \Im/\mu_{\rm B}$, а $A_{\rm dip}^{[110]} = A_{\rm dip}^{[\bar{1}10]} = -0.79(1) \, \text{к} \Im/\mu_{\rm B}$. Ион меди Cu⁺ в кристалле CuFeO₂ находится между двумя треугольными решетками, сформированными из магнитных ионов Fe³⁺ (рис. 1), такое магнитное окружение приводит к ориентационной зависимости константы дипольного взаимодействия описываемой функцией вида

$$A_{\rm dip}(\theta) = \frac{A_{\rm dip}^{[001]}}{2} (3\cos^2(\theta) - 1), \tag{5}$$

где θ – угол между направлением внешнего магнитного поля и осью *с* кристалла.

Полученные из расчета A_{dip}^{α} много меньше экспериментально определенных значений констант СТВ A_{hf}^{α} . Следовательно, основной вклад в A_{hf}^{α} обусловлен переносом спиновой поляризации от магнитных ионов Fe³⁺ на ионы Cu⁺.

Ионы железа Fe³⁺ в CuFeO₂ находятся в высокоспиновом состоянии и имеют пять на половину занятых 3d электронных уровня с суммарным спином S = 5/2, а ионы кислорода O^{2-} имеют полностью занятые $2s^22p^6$ орбитали (см. рис. 1) [14, 15]. В ковалентном смешивании Fe-O могут участвовать только электроны кислорода со спином вниз (\downarrow) , что будет приводить к положительной (↑) спиновой поляризации на ионах O²⁻, которая, в свою очередь, может переноситься на ионы меди вследствие перекрытия и ковалентного смешивания О 2s-, 2p- и Сu 3d-, 4*s*-орбиталей. Положительная спиновая поляризация на 3d-орбитали дает изотропный отрицательный вклад в сдвиг линии ЯМР, обусловленный A_{cp} , а также анизотропные вклады, обусловленные $A_{\rm sd}$ и $A_{\rm so}$. Однако в эксперименте наблюдается K > 0, следовательно, в ковалентном смешивании О-Си в какой-то мере должны участвовать электроны на 4s орбитали меди. Не нулевая положительная спиновая плотность на 4s орбитали дает только положительный изотропный вклад в сдвиг линии ЯМР, обусловленный $A_{\rm c}$. Участие в ковалентном смешивании как 4s, так и 3d-орбиталей меди, является распространённым случаем для соединений с одновалентной медью Cu⁺ [16–18].

Как видно из рис. 4 поведение сдвига не зависит от выбора направления вращения кристалла, а все точки лежат на одной кривой соответствующей функции:

$$K(\theta) = A + B(3\cos^2(\theta) - 1), \tag{6}$$

где A и B константы.

Такое поведение сдвига свидетельствует о чисто дипольной природе $A_{\rm ani}^{\alpha}$, $(A_{\rm so}^{\alpha} \approx 0)$, что позволяет выделить изотропную и анизотропную части константы СТВ. Действительно, как было показано в [19, 20], в ковалентном смешивании О–Си участвуют электроны $3d_z^2$ орбитали меди, ось z которой направлена вдоль оси c кристалла. В этом случае спиновая поляризация на $3d_z^2$ орбитали создает спиндипольное поле, для которого справедливо соотношение $A_{\rm sd}^{[001]} = -2A_{\rm sd}^{[110]} = -2A_{\rm sd}^{[110]}$. Тогда из выражения (4) получаем: $A_{\rm iso} = \frac{1}{3}(A_{\rm inf}^{[001]} + 2A_{\rm inf}^{[110]}) = 20.8 \, {\rm kG}/\mu_{\rm B}$, $A_{\rm ani}^{[001]} = 3.4 \, {\rm kG}/\mu_{\rm B}$, $A_{\rm ani}^{[110]} = A_{\rm ani}^{[110]} = -1.7 \, {\rm kG}/\mu_{\rm B}$. Используя далее значения $A_{\rm sd}^{\alpha} = -0.9 \, {\rm kG}/\mu_{\rm B}$. Константы СТВ $A_{\rm sd}^{\alpha}$ зависят от заселенности $3d_z^2$ орбитали $(3d) = (n \uparrow -n \downarrow)$ и среднего радиуса орбиты $\langle r^{-3} \rangle$ как [15]:

$$A_{\rm sd}^{[100]} = \frac{4}{7}n(3d)\mu_{\rm B}\langle r^{-3}\rangle;$$

$$A_{\rm sd}^{[110]} = A_{\rm sd}^{[\bar{1}10]} = -\frac{2}{7}n(3d)\mu_{\rm B}\langle r^{-3}\rangle.$$
 (7)

Используя значение $\langle r^{-3} \rangle = 5.1 \cdot 10^{25} \, \mathrm{сm}^{-3}$, рассчитанное для свободного иона [21], получаем оценку значения n(3d) = 0.007.

Константа СТВ поляризации остова определяется выражением: $A_{\rm cp} = n(3d)A_{\rm cp}^{\rm eff} = -0.9\,\mathrm{k}\Im/\mu_{\rm B}$, где $A_{\rm cp}^{\rm eff} = -125\,\mathrm{k}\Im/\mu_{\rm B}$ – поле создаваемое на ядре одним электроном (дыркой) на 3d орбитали [22]. Известные значения $A_{\rm cp}$ и $A_{\rm iso}$ позволяют определить константу контактного фермиевского СТВ $A_{\rm c}$. Используя выражение $A_{\rm c} = n(4s)A_{\rm c}^{\rm eff} = 21.7\,\mathrm{k}\Im/\mu_{\rm B}$, где $A_{\rm c}^{\rm eff} = 2\,\mathrm{M}\Im/\mu_{\rm B}$ – поле на ядре от одного электрона на 4s-орбитали [20], оцениваем заселенность 4s орбитали n(4s) = 0.01. Результаты оценок констант СТВ и заселенностей 3d и 4s орбиталей меди приведены в табл. 1.

Заключение. Показано, что тензор ГЭП на позициях меди в CuFeO₂ обладает аксиальной симметрией $\eta \approx 0$, главная ось ГЭП направлена вдоль оси *с* кристалла. Определены квадрупольные частоты для двух изотопов меди: ⁶³ $\nu_Q = 26.6(1)$ Гц, ⁶⁵ $\nu_Q = 23.6(1)$ МГц.

$A_{\rm c}$	$A_{\rm cp}$	$A_{\rm so}$	$A^{\rm c}_{\rm sd}$	$A_{\rm sd}^{\rm ab}$	$A^{\rm c}_{ m dip}$	$A_{\rm dip}^{\rm ab}$	n(3d)	n(4s)
$(\kappa \Im/\mu_{ m B})$	(%)	(%)						
21.7	-0.9	0	1.8	-0.9	1.6	-0.8	0.7	1

Таблица 1. Константы сверхтонкого взаимодействия и степени заселенности на 4s и $3d_z^2$ орбиталях меди в CuFeO₂

Совместный анализ ориентационных и температурных зависимостей магнитного сдвига линий ЯМР ⁶³Си и данных магнитной восприимчивости позволил определить природу сверхтонких полей на ядрах меди. Установлено, что в ковалентном смешивании О-Си участвуют электроны 4*s*- и 3*d*-орбитали меди, оценены заселенности этих орбиталей.

Авторы выражают благодарность С.В. Верховскому за продуктивное обсуждение экспериментальных результатов. Исследование выполнено при финансовой поддержке РНФ (проект #16-12-10514).

- T. Kimura, J. C. Lashley, and A. P. Ramirez, Phys. Rev. B 73, 220401 (2006).
- O.A. Petrenko, M.R. Lees, G. Balakrishnan, S. de Brion, and G. Chouteau, J. Phys.: Condens. Matter 17, 2741 (2005).
- F. Ye, Y. Ren, Q. Huang, J.A. Fernandez-Baca, Pengcheng Dai, J. W. Lynn, and T. Kimura, Phys. Rev. B 73, 220404R (2006).
- T. Nakajima, S. Mitsuda, K. Takahashi, M. Yamano, K. Masuda, and H. Yamazaki, Phys. Rev. B 79, 214423 (2009).
- N. Terada, D. Khalyavin, P. Manuel, Y. Tsujimoto, and A. Belik, Phys. Rev. B **91**, 094434 (2015).
- A. Sobolev, V. Rusakov, A. Moskvin, A. Gapochka, A. Belik, I. Glazkova, A. Akulenko, G. Demazeau, and I. Presniakov, J. Phys.: Condens. Matter 29, 275803 (2017).
- P. Dordor, J. P. Chaminade, A. Wichainchai, E. Marquestaut, J. P. Doumerc, M. Pouchard, P. Hagenmuller, and A. Ammar, J. Solid State Chem. 75, 105 (1988).
- A.F. Sadykov, A.P. Gerashchenko, Yu.V. Piskunov,
 V. Ogloblichev, A. Smol'nikov, S. Verkhovskii,

A. Yakubovskii, E. Tishchenko, and A. Bush, JETP **115**, 666 (2012).

- A. G. Smol'nikov, V. V. Ogloblichev, S. V. Verkhovskii, K. N. Mikhalev, A. Yu. Yakubovskii, Y. Furukawa, Yu. V. Piskunov, A. F. Sadykov, S. N. Barilo, and S. V. Shiryaev, PMM **118**, 134 (2017).
- A. G. Smol'nikov, V. V. Ogloblichev, S. V. Verkhovskii, K. N. Mikhalev, A. Yu. Yakubovskii, K. Kumagai, Y. Furukawa, A. F. Sadykov, Yu. V. Piskunov, A. P. Gerashchenko, S. N. Barilo, and S. V. Shiryaev, JETP Lett. **102**, 674 (2015).
- 11. А. Абрагам, *Ядерный магнетизм*, Пер. с англ., Иностранная Литература, М. (1963).
- A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134, A650 (1964).
- A. G. Smol'nikov, V. V. Ogloblichev, and A. F. Sadykov, JETP **112**, 1020 (2011).
- V.R. Galakhov, A.I. Poteryaev, E.Z. Kurmaev, and V.I. Anisimov, Phys. Rev. B 56, 4584 (1997).
- A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Clarendon Press, Oxford (1970).
- T. Yokobori, M. Okawa, K. Konishi, R. Takei, K. Katayama, S. Oozono, T. Shinmura, T. Okuda, H. Wadati, E. Sakai, K. Ono, H. Kumigashira, M. Oshima, T. Sugiyama, E. Ikenaga, N. Hamada, and T. Saitoh, Phys. Rev. B 87, 195124 (2013).
- J. M. Zuo, M. Kim, M. O'Keeffe, and J. C. H. Spence, NATURE 401, 49 (1999).
- J. Ghijsen, L.H. Tjeng, H. Eskes, and G.A. Sawatzky, Phys. Rev. B 42, 2268(1990).
- H. Hiraga, T. Makino, T. Fukumura, H. Weng, and M. Kawasaki, Phys. Rev. B 42, 041411(R) (2011).
- W. Ketir, S. Saadi, and M. Trari, J. Solid State Electrochem 16, 213 (2012).
- A. J. Freeman and R. E. Watson, Magnetism IIA ed. G. T. Rado and H. Suhl, Academic Press(1965), p. 291.
- 22. F. Mila and T. M. Rice, Physica C 157, 561 (1989).